10 Fancy Units of Measurement

by Anupum Pant

There exist a few unusual units of measurement which you must have never heard of, or would have never thought of them as units until now. Here is a list of 10 of the many fancy units of measurement.

Note: These units are not official. They’re often used for their humor value or for simplicity’s sake):

1. Car length – It is not a very unusual unit of measurement and is used normally to mention the braking distance of a vehicle. Deriving its length from a typical car’s length, 4 meters is referred as one “car length”. You must have heard one spy advising another spy to keep a 2 car length distance from a vehicle to avoid detection.

2. Nanoacres – A measure of area which is equal to about 4 sq.mm (4.0468564224 sq.mm exactly). It is the area of a single VLSI chip which is square in shape and measures 2 mm on each side. This unit is widely popular as a joke among electronic engineers – who often are known to make quips about VLSI nanoacres having costs in the same range as real acres.

3. Grave – It is a unit that measures mass and equals 1 kilogram or 1000 grams. Grave was set to be the standard unit of mass for the metric system, but it was replaced by kilogram in 1799. [read more about it]

4. Moment – Moment is actually something that was used to measure 90 seconds during the Medieval times. But for modern times, the Hebrew calendar’s definition of moment makes more sense. According to it, a moment is equal to 5/114 of a second or around 0.0438  seconds. [read more]

5. Jiffy – Jiffy is used popularly as an informal time in English. Think of someone saying “I’ll be back in a jiffy”. But, we’ve never thought of it as a unit. Also, every field has a different definition of Jiffy.

  • Early usage – 33.35 picoseconds or the time take by light to travel 1 cm.
  • Electronics – 1/50th or 1/60th of a second, depending on the AC power supply frequency.
  • Computing – Typically anything between 1 millisecond to 10 millisecond. Commonly: 10 ms.
  • Animation – The time interval between each frame of a dot GIF file or 1/100th of a second or 10 ms.
  • Physics/Chemistry – Time taken by light to travel 1 Fermi or 3X10^-24 seconds.

6. Dog Year – Based on a popular myth that dog’s age can be calculated in human years by multiplying it with 7. So, a single Dog year comes to around 52 days (365/7 – Days in a human year divided by 7)

7. A Bible – Used as measure of digital data volumes. It is like measuring the size of a disk in number of movies it can fit which I used in this article. A single Bible in uncompressed 8-bits, has around 4.5 million characters and 150 of them can be stored in a single CD. Hence, a bible can be measured to be approximately equal to 4.67 Megabytes. Similarly,  Encyclopedia Britannica and Library of Congress are used to represent much larger data volumes.

8.  Kardashian – Yes, it is named after the 72 day marriage of  Kim Kardashian to Kris Humphries. Of course, it measures 72 days of marriage. So, a 25 year marriage would amount to around 126.7 Kardashians.

9. Wheaton – Used to measure the number of twitter followers relative to the popular celebrity Will Wheaton. This became a standard when he had 0.5 million Twitter followers. Today, Will Wheaton himself has 4.88 Wheatons. I, for instance, with 210 followers, have about 0.00042 Wheatons.

10. Warhol – Derived from the widely used expression coined by Andy Warhol – “15 minutes of fame” – 1 Warhol measures exactly what you’d expect it to – 15 minutes of fame. Yes, it measures the amount of fame.
Consequently, 1 kilowarhol is equal to 15,000 minutes of fame or 10.42 days and 1 megawarhol measures 15 million minutes of fame or about 28.5 years.


Deal with Poverty or Go to Mars?

by Anupum Pant

Indian Space Research Organization (ISRO) launched its Mars orbiter, Mangalyan (Translation: Mars Craft) on November 5th 2013 with a hope to become the 4th such organization in the world, to step into Mars exploration. I must say, it is quite a fete for a developing country which has to deal with a myriad of other socio-economic menaces. Besides that, this mission also placed India above every other Mars mission ever, in terms of the total cost involved. Frugal engineering, has helped ISRO to go to Mars with low costs – with a mere $73 Million dollar budget, MOM (Mars Orbiter Mission) has become the cheapest mission ever to Mars. [silly comparisions to put this into perspective]

Side note: India’s other pioneering low cost endeavors – World’s cheapest car; World’s cheapest tablet and cheapest house.

But, this successful launch came with a throng of detractors, ridiculing India for not using these $73 Million to deal with poverty (or “clean feces off its roads”). Clearly, they did not think it through before making such comments.

  1. A nation’s economy is a huge and complex thing. Things aren’t as simple as, stop space exploration funds and divert them to tackle poverty. A number of things run in parallel. Also, every nation has its own set of problems and they don’t stop spending billions of dollars for technological advancement to focus only on social or economic issues. And, I’m sure that the government India is also taking enough steps to tackle its national issues with a firm footing on advancement of technological avenues like space exploration.
  2. The main part of this article: In contrary to what is popularly believed, money spent on space exploration does not nebulously float out of earth (on the other hand, distributing this money among the poor would breed complacency among them and cause the money to literally float out). It plays a major role in creating new technologies, products, jobs and businesses. Let us take the example of NASA here:
    Space exploration has led to development of many things that you use daily. There wouldn’t have been any computers, wrist watches, Velcro, cell phones, GPS navigators etc, if funds were never allocated to the “wasteful” space research.  Without this, there is a chance that you wouldn’t have heard of solar energy, cryogenics or even robotics. Also, several improvements in health care, energy and the environment are a result of research done for space exploration. [10 NASA inventions you use everyday].
    When you think of all this, $73 Million seems like an extremely small number. Remember, that this is also helping other businesses (vendors etc) flourish, which in turn are creating jobs for the poor and spurring innovation.
  3. Thirdly, The Indian Space Research Organization is a unique organization which has managed to stay the world’s most profitable space organization and has sustained on a minuscule budget of about $1 Billion. It relies on the Indian low-cost mantra to develop innovative technologies. As a result, this intelligent government venture has helped to create a profitable environment for space research. Hence, it isn’t a “wasteful” allocation of funds. Additionally, with its engineers living off a small salary ($20,000) as compared to American engineers ($100,000), we can definitely place our trust on an organization like ISRO – Like previous missions, they’ll make much more than $23 Million from this mission too. In other words, they’ll bring money in, not let it float out (better option for dealing with poverty, than just distributing it among the poor).

That said, 21 out of 51 missions to Mars have failed and it means that there is still a long way for this absurdly low-cost Indian mission [also a risky one] to be a completely successful one. So far, it is doing pretty good. We can only wait and see, what the end will be like.

The Standard World Map is Misleading

by Anupum Pant

Mercator’s projection

Most of us have this image of the world in our minds. This kind of a map, today printed in almost every textbook, known as the Mercator’s projection was first created to make work easy for navigators. Even Google Maps uses a Mercator-derived technique to project the world on a flat surface. But, Mercator’s projection has only deceived our idea of geographical area for all these years. For instance, it has led us into believing that Greenland covers an area which is almost equal to Africa (Also, have a look at the size of Antarctica there. Gosh!). The comparison of these two land masses actually looks like this.

According to this infographic, the actual size of Africa is larger than US, China, India, Mexico, Peru, France, Spain, Papua New Guinea, Sweden, Japan, Germany, Norway, Italy, New Zealand, the UK, Nepal, Bangladesh and Greece, all of them put together. In short, Africa is around 14 times larger than Greenland. Do not underestimate its area.

You can try playing with various combinations on this web app – map fight. Try these: Australia vs. Antarctica; US (contiguous) vs. Russia; and of course Greenland vs. Africa; they’ll leave you spellbound.

Why does this happen?

Since our planet is a sphere (an oblate ellipsoid really), to project it on a flat surface like paper, the actual shapes and sizes of landmasses have to be distorted to some extent. There is no way around it. Today, hundreds of different projection methods meant for various purposes are available, but none of them can exactly show the actual shapes & sizes of the landmasses. Some preserve the shape, some preserves the size, and others preserve direction…so on…

Mercator’s projection, the devious one discussed above, for example, uses a cylindrical projection. That means, it stretches the areas on a globe, which are nearer to the poles. Hence, the imprecise size of Greenland and Antarctica.

What is a perfect map, then?

Even after developing hundreds of projection method, we haven’t been able to spot the perfect method, nor will it happen in the future. But, to get the right sense of area, a projection method known as the Peters (also known as Gall-Peters projection) projection, is said to be the most accurate (in terms of area). It is also one of the most controversial maps.

Peter’s projection also has a huge fan following in spite of its terrible appearance.

Bonus Map Facts:

  1. National Geographic started using the, good looking, Robinson projection from the year 1988, and used it for ten years, then, it moved to the Winkel-Tripel in 1998.
  2. An ideal Mercator’s projection would have infinite height if it doesn’t truncate some area near the extreme poles.
  3. Peters pointed that the Mercator’s projection made developing countries seem much smaller than they actually are. He said that these errors made the struggles of developing nations near the equator looks much smaller to the developed world.
  4. XKCD published a comic on projections – “What your favorite map projection says about you.” 977. [see the explanation here]