Pope John XXI – A Man of God and Science

by Anupum Pant

Pope John XXI was the only pope ever, who had an illustrious medical career alongside his work as a theologian. He was also a fruitful writer, who wrote on subjects like logic, physics, philosophy and medicine. Before being elected as a Pope, he served as personal physician to Pope Gregory.

In medicine, he contributed towards great advances in female reproductive system and wrote about a few remarkably effective methods of birth control, during times when the Catholic Church condemned contraception. He also taught medicine at the University of Siena.

As men with thoughts ahead of their time are always labeled as heretics, John was also called a magician after his death. His death was announced to have been caused by “an act of god”.

The unfortunate accident

His brief papacy [of 8 months, 1276-77] ended with a tragic accident:

As a man of the science, he dabbled in astronomy and had a special room built in the papal palace. He loved spending hours in this special room, where he could observe the stars at night. It was in this room, where he sustained severe injuries, when the roof of his palace collapsed. He died six days later (on May 20, 1277).

Stephen Hawking’s interpretation

In 1277, Pope John XXI’s declared ‘laws of nature’ to be heresy because they conflicted with God’s omnipotence. Several years later, Hawking and Mlodinow, with their book, The Grand Design, caused quite a stir when they wrote – “Pope John was killed by the effects of the law of gravity a few months later when the roof of his palace fell in on him“.

Bonus Death Fact: Jack Daniel, the founder of Jack Daniel’s Tennessee whiskey distillery, died in very peculiar manner:

Unable to open the safe in his office, Mr. Jack kicked it in frustration. This blow broke his toe and infection set in, leading to his untimely death in 1911. – [Source]

10 Fancy Units of Measurement

by Anupum Pant

There exist a few unusual units of measurement which you must have never heard of, or would have never thought of them as units until now. Here is a list of 10 of the many fancy units of measurement.

Note: These units are not official. They’re often used for their humor value or for simplicity’s sake):

1. Car length – It is not a very unusual unit of measurement and is used normally to mention the braking distance of a vehicle. Deriving its length from a typical car’s length, 4 meters is referred as one “car length”. You must have heard one spy advising another spy to keep a 2 car length distance from a vehicle to avoid detection.

2. Nanoacres – A measure of area which is equal to about 4 sq.mm (4.0468564224 sq.mm exactly). It is the area of a single VLSI chip which is square in shape and measures 2 mm on each side. This unit is widely popular as a joke among electronic engineers – who often are known to make quips about VLSI nanoacres having costs in the same range as real acres.

3. Grave – It is a unit that measures mass and equals 1 kilogram or 1000 grams. Grave was set to be the standard unit of mass for the metric system, but it was replaced by kilogram in 1799. [read more about it]

4. Moment – Moment is actually something that was used to measure 90 seconds during the Medieval times. But for modern times, the Hebrew calendar’s definition of moment makes more sense. According to it, a moment is equal to 5/114 of a second or around 0.0438  seconds. [read more]

5. Jiffy – Jiffy is used popularly as an informal time in English. Think of someone saying “I’ll be back in a jiffy”. But, we’ve never thought of it as a unit. Also, every field has a different definition of Jiffy.

  • Early usage – 33.35 picoseconds or the time take by light to travel 1 cm.
  • Electronics – 1/50th or 1/60th of a second, depending on the AC power supply frequency.
  • Computing – Typically anything between 1 millisecond to 10 millisecond. Commonly: 10 ms.
  • Animation – The time interval between each frame of a dot GIF file or 1/100th of a second or 10 ms.
  • Physics/Chemistry – Time taken by light to travel 1 Fermi or 3X10^-24 seconds.

6. Dog Year – Based on a popular myth that dog’s age can be calculated in human years by multiplying it with 7. So, a single Dog year comes to around 52 days (365/7 – Days in a human year divided by 7)

7. A Bible – Used as measure of digital data volumes. It is like measuring the size of a disk in number of movies it can fit which I used in this article. A single Bible in uncompressed 8-bits, has around 4.5 million characters and 150 of them can be stored in a single CD. Hence, a bible can be measured to be approximately equal to 4.67 Megabytes. Similarly,  Encyclopedia Britannica and Library of Congress are used to represent much larger data volumes.

8.  Kardashian – Yes, it is named after the 72 day marriage of  Kim Kardashian to Kris Humphries. Of course, it measures 72 days of marriage. So, a 25 year marriage would amount to around 126.7 Kardashians.

9. Wheaton – Used to measure the number of twitter followers relative to the popular celebrity Will Wheaton. This became a standard when he had 0.5 million Twitter followers. Today, Will Wheaton himself has 4.88 Wheatons. I, for instance, with 210 followers, have about 0.00042 Wheatons.

10. Warhol – Derived from the widely used expression coined by Andy Warhol – “15 minutes of fame” – 1 Warhol measures exactly what you’d expect it to – 15 minutes of fame. Yes, it measures the amount of fame.
Consequently, 1 kilowarhol is equal to 15,000 minutes of fame or 10.42 days and 1 megawarhol measures 15 million minutes of fame or about 28.5 years.

 

Deal with Poverty or Go to Mars?

by Anupum Pant

Indian Space Research Organization (ISRO) launched its Mars orbiter, Mangalyan (Translation: Mars Craft) on November 5th 2013 with a hope to become the 4th such organization in the world, to step into Mars exploration. I must say, it is quite a fete for a developing country which has to deal with a myriad of other socio-economic menaces. Besides that, this mission also placed India above every other Mars mission ever, in terms of the total cost involved. Frugal engineering, has helped ISRO to go to Mars with low costs – with a mere $73 Million dollar budget, MOM (Mars Orbiter Mission) has become the cheapest mission ever to Mars. [silly comparisions to put this into perspective]

Side note: India’s other pioneering low cost endeavors – World’s cheapest car; World’s cheapest tablet and cheapest house.

But, this successful launch came with a throng of detractors, ridiculing India for not using these $73 Million to deal with poverty (or “clean feces off its roads”). Clearly, they did not think it through before making such comments.

  1. A nation’s economy is a huge and complex thing. Things aren’t as simple as, stop space exploration funds and divert them to tackle poverty. A number of things run in parallel. Also, every nation has its own set of problems and they don’t stop spending billions of dollars for technological advancement to focus only on social or economic issues. And, I’m sure that the government India is also taking enough steps to tackle its national issues with a firm footing on advancement of technological avenues like space exploration.
  2. The main part of this article: In contrary to what is popularly believed, money spent on space exploration does not nebulously float out of earth (on the other hand, distributing this money among the poor would breed complacency among them and cause the money to literally float out). It plays a major role in creating new technologies, products, jobs and businesses. Let us take the example of NASA here:
    Space exploration has led to development of many things that you use daily. There wouldn’t have been any computers, wrist watches, Velcro, cell phones, GPS navigators etc, if funds were never allocated to the “wasteful” space research.  Without this, there is a chance that you wouldn’t have heard of solar energy, cryogenics or even robotics. Also, several improvements in health care, energy and the environment are a result of research done for space exploration. [10 NASA inventions you use everyday].
    When you think of all this, $73 Million seems like an extremely small number. Remember, that this is also helping other businesses (vendors etc) flourish, which in turn are creating jobs for the poor and spurring innovation.
  3. Thirdly, The Indian Space Research Organization is a unique organization which has managed to stay the world’s most profitable space organization and has sustained on a minuscule budget of about $1 Billion. It relies on the Indian low-cost mantra to develop innovative technologies. As a result, this intelligent government venture has helped to create a profitable environment for space research. Hence, it isn’t a “wasteful” allocation of funds. Additionally, with its engineers living off a small salary ($20,000) as compared to American engineers ($100,000), we can definitely place our trust on an organization like ISRO – Like previous missions, they’ll make much more than $23 Million from this mission too. In other words, they’ll bring money in, not let it float out (better option for dealing with poverty, than just distributing it among the poor).

That said, 21 out of 51 missions to Mars have failed and it means that there is still a long way for this absurdly low-cost Indian mission [also a risky one] to be a completely successful one. So far, it is doing pretty good. We can only wait and see, what the end will be like.