###### By Anupum Pant

If you take a surface, membrane with a layer of loose particles or certain liquids on it, you’ll see that these particles get arranged in beautiful patterns if the membrane is made to vibrate with varying frequencies.

This phenomenon has been known for a long time now, probably since the time when early human tribes used to put grains of sand on drums made of taut animal skin. Since then Leonardo Da Vinci and Galileo Galilei have been known to have observed this phenomenon by hitting or scraping a surface covered with visible particles and .

Later, with information gleaned from Galileo’s and Leonardo’s notes, in the year 1680, Robert Hooke, English scientist from the Oxford University, devised a simple equipment which demonstrated this effect much clearly. He made a glass plate covered with flour to vibrate with the help of a violin bow. And observed beautiful patterns.

Much later, Ernst Chladni explained these figures using mathematics, spread it all across Europe and made a lasting impression on The French Academy of Sciences. These patterns thus came to be known as Chladni figures.

Brusspup, a YouTube channel known for it’s amazing videos demonstrates these Chladni figures on video.

Today, this study, which makes sound and vibration visible to the naked eye, is called Cymatics.

###### By Anupum Pant

The length of Australia’s coastline according to two different sources is as follows:

1. Year Book of Australia (1978) – 36,735 km
2. Australian Handbook – 19,320 km

There is a significant difference in the numbers. In fact, one is almost double the other. So, what is really happening here? Which one is the correct data?
Actually, it depends. The correct data can be anyone of them or none of them. It completely depends on the kind of precision you decide to use while measuring the coastline. This is the coastline paradox.