Mpemba Effect – Hot Water Freezes Faster Than Cold Water

By Anupum Pant

In the past, we have seen that when it comes to estimating temperature, we are not so smart. Once again seeing the Mpemba Effect defying all known logic, reminds me to be careful about applying logic to most of the natural phenomena which are seemingly simple but in reality are extremely complicated.

By applying simple logic, a 7-year-old could tell you that cold water should turn into ice quicker than hot water would. It should, because a hot liquid contains a lot more heat as compared to a colder liquid, which [the heat]  has to be removed in order to freeze it. Yes, it is what anyone who is unaware of the Mpemba Effect would think. But, that isn’t the case with water. It turns out that a very common substance – water – is not as simple as it looks.

Mpemba Effect

Since the time of Aristotle and Descartes, scientists have noted that hot water can freeze faster than cold water (and yet the effect is not popularly known among us today). Although the effect was noted back then, the actual mechanism which caused it remained a mystery all along…until the year 2013.

All this time this effect must have been known by some other term because, it was not until the 1960s it was named “Mpemba effect”. It was named that after a Tanzanian cookery student Erasto Mpemba when he observed that hot ice cream mix froze faster than the cold mix.

Several theories have tried to explain the mechanisms that cause the Mpemba Effect. Not even one of them was convincing enough. Probably this is what propelled the geniuses from Singapore who could finally solve this mystery during the month of October this year.

What causes it?

In simple words, Hydrogen bonds cause this effect – faster freezing hot water. Normally, individual water molecules are connected by this bond called the Hydrogen bond. Think of the water molecule as a string with two bullies – hydrogen bonds – one on either side. These Hydrogen bonds pull this string from both sides. As a result, the string stretches. We’ve all fought with rubber bands and know that a stretched string has a butt load of energy stored inside it. The same thing happens with water. Energy is stored in stretched water molecules at normal temperature. This extra energy has to be removed to cool water.

At a higher temperature, the heat kind of weakens these bullies. So, the weak bullies aren’t able to pull the string as much. Now, individual molecules sit apart. They are no longer stretched. Thus, not much energy is stored in these strings anymore. They have given up energy. There is no longer any extra energy that needs to be removed. Hence, cooling is faster.

Sorry: Today I don’t have my buddy – the internet – with me. So, you won’t see any outgoing reference links today. I have a just a bit of internet (a slower 2G connection) which I’m using up to publish this.

A Flashlight That Uses Body Heat Instead of Batteries

By Anupum Pant

I talked about a light that utilizes the power of gravity to light up a few days back. This flashlight is a bit similar in a way that, it also doesn’t need any batteries. But the underlying mechanism it uses, is completely different.

The winner of this year’s Google Science Fair, in the age group of 15-16, was a 15-year-old girl from Canada, Ann Makosinski. In her project she created a flashlight that, instead of batteries, uses our body heat to light up. She calls it “Hollow Flashlight”

The flashlight uses 4 Peltier tiles to convert the temperature difference (between body and room temperatures) into energy. One side of the tiles is heated by our body heat and the other side is at room temperature. This temperature difference creates electricity using the Thermoelectric effect. The tiles used for this light need a minimum of 5 degree difference of temperature to work.

Peltier Tiles

Peltier tiles utilize thermoelectric effect to convert temperature difference into electricity. When there is a enough temperature difference, charge carriers move from hot area to the colder area. This separation of charges builds up a potential difference across the height of the tile. This potential difference can be used up for various things. In this case, it was used to light up LEDs.

Advantages: The amount of potential difference produced depends on the material. Peltier tiles are great because they are compact and they do not use any moving parts. Elimination of any moving parts eliminates wear and tear. They last long and do not need a lot of maintainance. However, their efficiency is not so great. So, they are used only where long life is essential.
The Voyager space probe and other deep space probes, where long life is of prime importance, use Thermoelectric generators (another image). The heat there is produced by a radioactive isotope. Implanted pacemakers which require long life also use it as a source of energy. All of them work utilizing the same effect – thermoelectric effect. The eco-fan, a wood stove fan, also uses the same effect in a very creative way.

Thermoelectric Generators have a very interesting history.