There Is No Pink

By Anupum Pant

As we’ve seen before in a talk by David Eagleman, that there is nothing like colors really. They are simply electromagnetic waves with varying wavelengths. Colors are perceptions created by our brains that give us an evolutionary advantage to differentiate things easily. Without colors it would have been really difficult for us to spot fruits on trees. Of course that is just one of the millions of examples of how colors help us.

Perception kept aside for a while, we actually do know that there is a spectrum of visible light as we see it – ranges from violet to red. We see this spectrum on rainbows and thin films. Each of these colors on the spectrum is a wave (and particle) that has a particular frequency.
Mysteriously, the universal symbol of love, the color pink, is absent in this spectrum. There is no specific frequency for the color pink. There is no pink. Still we see it. So, what is pink, really? If it isn’t in the spectrum, why do we see it?

Why do we see pink?

Single type cone alone: We detect colors through these things called cones that are present at the back of our eye. There are 3 types of cones – let us call them red, blue and green. So, if an object absorbs all the white (sun) light and sends just the red color [waves] towards your eyes, red cones get activated and your brain tells you, you are seeing the color red. Similarly, green or blue cones get activated when the respective green or blue waves come towards your eye and then you are able to see the colors green or blue.

2 of them together: For other colors, things can get a bit complicated. To see pure yellow, both red and green cones have to get activated. Similarly, when green plus blue cones get activated, you see cyan, and blue plus red cones let you see the color magenta.

But cone aren’t switches that go either one or zero. They are like sliders. For instance, to see the violet color, your blue cones get fully active, while the red cones are activated only to a certain extent. As a result, your brain says, violet! That is 2 types of cones working together.

3 of them together: Now let us see how three of them work together. The color white activates all the 3 type of cones fully. Black activates none. And so on…

Pink does something similar as it uses three types of cones. To see pink, all three types of cones have to work together.  When red cones get fully active and the other two are only partially activated, we see the color pink.

So, even if objects don’t reflect magenta, yellow or pink (or several other RGB combinations like that), our cones can send mixed signals to our brains and the brain in turn creates these colors for us. In reality, they don’t exist.

[Read more]

What is pink really?

Henry Reich of minute physics, in his video explains this by referring to pink as white minus green. So, according to them, the color pink is actually minus green.  In short, absence of green color is nothing but pink. I’ve attached the video below:

The Sun’s Unusual Behavior – Seen from Mercury

by Anupum Pant

The sun – as seen from Earth

For most of us living on Earth (closer to the equator), the sun has followed a simple path throughout the years. It rises, goes up at noon and then sets for rest of the day. It is a simple straight line for the complete year.
For people living a little away from the equator, things get a bit interesting. There, the summer sun at noon is overhead, but the winter sun is low at noon, not overhead. It isn’t very easy for a person living near the equator to grasp this phenomenon well. You’ll have to go there and see for yourself. Or simply, the simulator at the end of this paragraph will help you understand it better.
At poles, the sun almost moves horizontally for many days. It keeps on making a horizontal circle around you. There, it is day for 6 months and night for the next 6 months. [Here is a sun path simulator for Earth]

However, nowhere on earth, things get as interesting as they get in the skies of Mercury.

The sun – as seen from Mercury

On Mercury, the sun appears to briefly reverse its usual east to west motion once every Mercurian year. The effect is visible from any place on Mercury, but there are certain places on its surface, where an observer would be able to see the Sun rise about halfway, reverse and set, and then rise again, all within the same day. It is indeed an unusual performance which isn’t easy for us Earthlings to digest. [See animation in the next paragraph]

Why does it happen?

Let us consider a simpler analogy – some planets (like Mars), as seen from earth, take a similar path. [see the animation for Mars’s path as seen from earth]

The planets, including Earth, all travel around the Sun in a continuous orbit. We can see them make their way across the sky in a straight line usually. However, every now and then a planet appears to turn around. After turning around, it appears to move back the way it came. This is called a retrograde orbit and is caused due to the difference in speeds at which the planets circle the Sun.

So, as we see Mars do a reverse from earth, a similar motion of sun is observed from the surface of Mercury.

[Apparent Retrograde Motion – Wikipedia]