Axolotl – A Walking Fish That can Regenerate Limbs

By Anupum Pant

If you are looking at an Axolotl for the first time, it will confuse you. With an oddly shaped body that resembles both a catfish and a salamander, you’ll wonder if it lives in water or on land. [Image]

What is it?

A fish? Axolotl, commonly known as the Mexican Walking Fish, isn’t actually a fish. It is an amphibian, which means it has both lungs and gills. They almost never come out of water, hold their breath and take in oxygen using their gills (those three pairs of parts coming out at the back of its head are the gills). They can hold their breath for a year, beat that Mr. David Blaine.

Or Salamanders? They are closely related to salamanders and interestingly the adult Axolotls look like baby Salamanders. They have long abandoned the usual amphibian-transformation from a larva stage to an adult. Unlike Salamanders, they don’t transform into adults that can live outside water. They stay in water and walk around on the water-bed.

However, strange species of Axolotl was once delivered to a zoologist Auguste Duméril, which had somehow transformed like salamanders and would happily come out of water. But this transformation (metamorphosis) shortened their life span. Later it was found that this process can be artificially triggered by injecting iodine. (Do NOT try this at home)

As pets: Today, these animals are fairly common and are used as exotic pets all around the world. Especially in Japan, people love to have them in their aquariums.

Side note: Like several other Pokémon based on real animals, Whooper and Mudkip were actually based on Axolotls.

Regenerative Powers

Besides having the ability to walk underwater and its unusual appearance, there is something that is much more interesting about them. Unlike, almost any other vertebrate, they have the power to regenerate various cells. Not just cells, Axolotls can regenerate complete body parts – limbs, gills, eyes, kidneys, even large portions of its liver and its heart muscle. Even portions of its spine and brain can be regenerated. They are able to grow back a severed limb in span of few months. This is the reason scientists love these creatures and conduct a number of studies on them every year.

Things You Should Know About Farts

by Anupum Pant

Flatulence, an expulsion of intestinal gas, commonly known as fart, is something no one likes to talk about because it is considered a taboo, almost everywhere in the world. To top it all, some might even sideline this article by tagging it as a vulgar one. In my defense, that is exactly the purpose of my blog – To talk about things no one will talk to you at school (or anywhere else). Our inclination here is to learn.

Avoid shaming others for it.
Firstly, it is important to know that, irrespective or gender, race or nationality, farting is an invariable result of digestion and everyone does it about ten times a day. Even dead people fart. So, by shaming someone for letting it out in an accidentally loud way, is hypocritical on your part; it [shaming others] can be avoided. As Eric Auld says, it is okay to fart.

Do not hold it.
Secondly, it is not okay to hold flatulence to avoid embarrassment. Doing this, has the potential to cause a life threatening condition called diverticulitis. This disease is prevalent among the urban people for obvious reasons. Urban people have a greater societal pressure to hold it, than a free-living farmer. To give you an idea, 30 million Americans are currently suffering from it (old data).

What is it?

Principally, it is a mixture of gases taken in through mouth with food and gases which are produced while digesting food. The composition of ‘gas’ varies with, people, the kind of bacteria in their stomach and the kinds of food they eat. Oftentimes, people don’t hate their own smell; at the same time, detest the gases coming out from others. A fart is comprised of gases like Hydrogen, Nitrogen, Carbon dioxide, Oxygen and Methane. It smells bad due to the presence of Hydrogen Sulfide, Mercaptans and Ammonia. And the presence of inflammable gases like Hydrogen and Methane makes them inflammable.

Farts in a humid environment can seem worse because during such conditions, our sense of smell is enhanced. This is the reason why farts smell worse in a shower.

Minimizing the effect

Although, there is no way you can end this trouble from your life, you can adjust your diet a bit to prevent this from happening in excess. Beans, cauliflower, corn, eggs etc are some foods which are notorious for producing gas in your body. These foods release a relatively greater amount of gas than other foods while getting digested in the intestines. Cutting their intake can help (of course consult your doctor first).

Another way to lower the problem is to prevent the odor from troubling others. This can be done by using products like “odor-proof undies”.

Coughing or suddenly moving your chair could help you to mask the sound.

 

Harnessing The Power of Nature – Biological Data Storage

by Anupum Pant

The present storage technology

Storage technology has come long way from the year 1956 when IBM, the massive corporation started pushing this technology. Its journey started with data storage densities of orders as low as 40 bits per square inch in 1956 (RAMAC 350). This effort from their side indeed brought in great results and IBM could set a record of density record of 14.3 billion bits per inch, by the year 2000.

Today, in the year 2013, most HDDs (Hard Disks Drives) are able to store with densities of around 500 Billion bits per square inch; technology at this level has brought Terabyte sized HDDs to our computers. The research being done on increasing density of data is still a bustling area. As a result, we often see news breaking in with breath-taking new storage technologies almost every month.

Latest Stories

Just a few months back, using a technique called nanopatterning a team from Singapore was able to show 3300 billion bits per square inch. That is almost 6 times the density of a normal HDD. It means that a 1TB HDD of present size could hold 6TB if this could come to manufacturing units.

Seagate, in another story, promised data densities of the order 1TB per square inch (8000 billion bits per square inch) within the next decade. Which would enable hard drives of up to 60 TB in capacity.

A similar thing has happened to compact disks. From CDs to DVDs to Dual Layer DVDs to BluRays and several other storages that didn’t last – from zip drives to holographic storage. The data storage densities have improved dramatically.

Is it enough?

Although, our present ability to store a lot of data in small physical spaces is enough for now, to meet the future demands we will need to keep progressing with an unbelievable rate. The fact – physical storage is reaching its limit gradually, could bottleneck our progress in the future.

Biological Storage Devices

The exact storage concept used in amazing natural systems like the human brain and DNA has remained elusive for decades now. To keep up with the rapid pace of development it is important that we step up our work in this area. I think, the answer to our demands lies with the nature.

A brain, for instance, is estimated to be able to store something closer to 2.5 petabytes (or a million gigabytes). The sad part, we don’t exactly know how it stores. Moreover, we don’t even know how we could precisely calculate their storage limits. These estimates are just a theoretical calculation. We still have a long way to go.

The greatest storage device

Recent successful experiments with storage and retrieval of data in the human DNA has come with a new hope for the future. Teams at the EU Bioinformatics Institute and Harvard University have successfully stored famous speeches, photos, and entire books, and then retrieved them with 99.99% accuracy.

Being able to store data in the DNA will confer upon us three advantages. Firstly, it will be fast (very), yes, faster than the flash drive. Secondly, it won’t age with repeated storage cycles (around 10,000 years), at least not like HDDs which have moving parts. Finally, DNA will enable us to reach data densities of unimaginable levels. Imagine being able to store of half a million DVD disks in a single gram of DNA!  Technically that would amount to 700 terabits per gram (measuring in area is difficult for an entity like this). Others have reached to densities as much as 2.2 petabytes per gram.

Bring DNA drives to our PCs I say!