A Flashlight That Uses Body Heat Instead of Batteries

By Anupum Pant

I talked about a light that utilizes the power of gravity to light up a few days back. This flashlight is a bit similar in a way that, it also doesn’t need any batteries. But the underlying mechanism it uses, is completely different.

The winner of this year’s Google Science Fair, in the age group of 15-16, was a 15-year-old girl from Canada, Ann Makosinski. In her project she created a flashlight that, instead of batteries, uses our body heat to light up. She calls it “Hollow Flashlight”

The flashlight uses 4 Peltier tiles to convert the temperature difference (between body and room temperatures) into energy. One side of the tiles is heated by our body heat and the other side is at room temperature. This temperature difference creates electricity using the Thermoelectric effect. The tiles used for this light need a minimum of 5 degree difference of temperature to work.

Peltier Tiles

Peltier tiles utilize thermoelectric effect to convert temperature difference into electricity. When there is a enough temperature difference, charge carriers move from hot area to the colder area. This separation of charges builds up a potential difference across the height of the tile. This potential difference can be used up for various things. In this case, it was used to light up LEDs.

Advantages: The amount of potential difference produced depends on the material. Peltier tiles are great because they are compact and they do not use any moving parts. Elimination of any moving parts eliminates wear and tear. They last long and do not need a lot of maintainance. However, their efficiency is not so great. So, they are used only where long life is essential.
The Voyager space probe and other deep space probes, where long life is of prime importance, use Thermoelectric generators (another image). The heat there is produced by a radioactive isotope. Implanted pacemakers which require long life also use it as a source of energy. All of them work utilizing the same effect – thermoelectric effect. The eco-fan, a wood stove fan, also uses the same effect in a very creative way.

Thermoelectric Generators have a very interesting history.

Gravity Light – A Light With No Running Costs

By Anupum Pant

Visit blogadda.com to discover Indian blogs
A $5 lamp that lights up using gravity can be used without electricity or batteries, over and over again with no running costs. Impressive enough? There is more.

A British company, after working for 4 years on this project, with an aim to replace kerosene lamps, started an internet fundraising campaign on Indiegogo and successfully raised about 7 times more than what they had aimed for – aimed for raising a fund of $55,000 and ended up raising $399,590. They had invented the Gravity Light.

Gravity light uses the force of gravity to light up – a free, completely reliable and totally unlimited source of energy. For it to start, the user is supposed to lift up a hanging weight of about 10 kg. And there! As the bag full of dirt, stones or sand starts coming down slowly, it lights up an LED light. The weight keeps coming down for about 30 minutes and then it has to be raised again. It generated a very minuscule amount of electricity and manages to give out a much brighter light than a kerosene lamp.

The energy generated from it can also be used to charge batteries, charge phones, run a radios etc, with attached accessories.

Interestingly, the company has plans to develop various other gravity powered solutions. So, in the future, we might probably see a way to reach the internet without batteries or electricity.

Other interesting lighting ideas:

[Gravia lamp] [Water + Bleach lamp] [Algae + CO2 lamp]

 

Bricks Which Are Lighter Than Air

by Anupum Pant

What would smoke look and feel like, if you could solidify it?

Aerogels

Although, first made in 1931, Aerogels are relatively newer materials and a tremendous amount of research is being done on them everyday. Lightest solids ever, Aerogels weighing about seven times lesser than air have been made. Their extreme properties have given a fascinating field of interest to students and scientists. [Read the last paragraph]

How are they made?
Aerogels, also known as solid smoke or frozen smoke are extremely light materials. They are made by a process called sol-gel process which involves removing all the moisture from a specially made gel (Hypercritical Drying). Although the procedure may sound simple, there is a lot of technology involved in making them. Moreover, practically usable Aerogels which can endure moist conditions and high stress conditions are much more challenging to make. Also, it is very expensive to make them. [They can be made at home – with costly equipment of course]

Why is it so light? 
The whole lot of porosity left inside due to drying of the gel is what makes it so light. You can think of them as a sponge which is hard like pumice. But, when you think of a sponge, remember that mostly Aerogels aren’t very resilient. That means, unlike sponge they won’t get back into the previous shape after they’ve been pressed a lot. They are much sturdier/tighter than sponges. A small (not very small; due to very low density they occupy large space) piece of Aerogel weighing just 2 grams has been shown to hold a 2.5 kg brick without deforming. Poorly made Aerogels, on the other hand can also not be very sturdy. They would deform with a hard press of a finger and stay deformed.

How light are they?
Agreed, they can be lighter than air, but the practical mass varies greatly. And they don’t float in air because, with air present inside them, they are slightly heavier than air (weight of air inside + solid material), but can be made to float in air by replacing the air inside it with Hydrogen or Helium. Their lightness and density is completely dependent on the amount of porosity included during the fabrication – which can be controlled. Also, the kind of gel used to make it, affects the weight of the final block. So a block with 3 feet in length, breath and height can weigh anything from 1 kg to just 160 gm.

Aerographite, a carbon Aerogel made by German material scientists from Kiel University and the Hamburg University of Technology, was said to have weighed only 0.2 mg per cubic centimeter. It was 5000 times less dense than water and 6 times lighter than air (counting only the solid material’s weight of course). [Published Paper]

Graphene Aerogel: As if that wasn’t enough, recently, Chinese material scientists developed a lighter material than Aerographite. It was based on Graphene. A Graphene Aerogel; seven times lighter than air. This one, unlike other silica Aerogels, can recover like a sponge after getting deformed. [Published Paper]

Other Properties

Aerogels exhibit various other desirable properties which make them useful for a myriad of applications [See the Wikipedia Article]. For instance, they are very good insulators of heat. A nicely made Aerogel block which is just under a centimeter thick can protect things from a direct flame. Other desirable properties are high surface area, high thermal and acoustic resistivity, low dielectric constant, and low refractive index.

Aerogels absorb water or moisture from the air and even from human skin easily. Handling them with bare hands can cause blisters. But, the ones which repel water have been made successfully by altering fabrication parameters. Also, if particles of it are inhaled, it can cause problems. Hence, hand gloves and respiratory masks are used to handle them.

I want to study interesting materials like these

If you think Aerogels and Wolverine’s claws are interesting things. You can make a career in researching materials like these by making a foray into Materials Science and Engineering. Most good universities offer a course in it. It is a budding field, growing at a rapid pace with loads of opportunities waiting for you.