Drones beyond Amazon’s Drone Delivery System

By Anupum Pant

For a long time I’ve had this idea noted in a file and the hottest news from Amazon, linked to a “revolutionary drone accomplishment”, pushed me into writing it down. Since I cover topics ranging from a gamut of areas in the name of science, I thought, through this article, it would be appropriate for me to enable my readers see beyond an ongoing viral news topic – The unveiling of Amazon’s drone delivery. If you haven’t seen it already, you’ll find the video here. [Video] [details here]

Long before Amazon released its concept of Premier Air, 30 minute delivery, the idea – usage of drones for things you wouldn’t have thought of – has been tested or put to use in several related ways. Some of the reported tests and uses of drones are as follows:

Drones for food delivery: During June 2013, with an idea (read: PR stunt) that would inspire Amazon in the future, Dominos U.K. released a test video of the “DomiCopter”. In the video they showed an unmanned drone picking up a Pizza and delivering it to the customer without having to encounter any traffic in between. Slick! But, that isn’t all.
A year before this, Taco delivering drones as well as a Burrito bomber drones were also seen. All of them had gone viral. Yet, we still have a long way to go to see these delivery systems working legally.

Mosquito killers: A North Florida-based company that supplies drones for military missions, showed a drone that would speed up detection of stagnant water. As a result, helping the authorities cut mosquito breeding grounds in Florida.

Hover Cameras: Golf channel tested a new way of filming golf tournaments using drones this year. Besides that, we’ve seen drones being used for sports photography and journalism too.

Drone Waiters: To promote a new product, YO! Sushi, a London restaurant started using ‘flying trays’ for bringing burgers to their customers. These flying trays were nothing but drones carrying food trays. Also, it increased their speed ‘exponentially’.

Drone Constructors: This project dates back to the year 2010-11. Two architects, Garamazio and Kohler demonstrated aerial construction using unmanned drones. However, they demonstrated building process for a heavily scaled down version of a building using foam bricks. Nevertheless, it was an achievement in the year 2011, when QuadroCopters were just starting to get popular.

Although we have seen a lot of unusual uses for drones being demonstrated all around the globe (many more creative uses remain to be seen), we are yet to see their practical implementation; especially for projects like the Amazon drone delivery, which require drones to move around in a complicated airspace (in terms aviation rules).

Federal Aviation Administration (FAA) is actively working on rules for unmanned aerial vehicles. Still we won’t see drones moving around legally and freely, any time before 2015.

Everything else you’d want to know about drones: PopSci

Yakhchal – An Ancient Cold Storage Marvel

By Anupum Pant

Visit blogadda.com to discover Indian blogs
During a period when electricity was only a thing for the Gods, around 400 B.C.E., in the hot-arid deserts of Iran where temperatures touched 40 degree centigrade, ancient engineers had found a way to keep their ice from melting. Two thousand years back, a cold storage facility was being used. The impressive thing about it – it was clean and sustainable technology.

What are these?

Yakhchals, or ice pits of ancient Persia were the huge mounds (buildings hollow from the inside), which made it possible for Persians to store away the ice for summers, meat, dairy products, other food items and chilled frozen Faloodeh for the palace. Beside treats for the palace, the method of preserving ice was so professional yet simple that even the poor could afford it.

Structure and Working

The structure of these buildings above the ground is a large mud brick dome, often rising to about 60 feet in height. Below it are large underground empty spaces, up to 5000 cubic meter in volume. This space had access to wind catch and often contained a system of wind-catchers that could easily bring temperatures inside the space down to frigid levels in summer days. The structures were built so well that many still remain standing.

Working: The massive insulation built into the walls (due to the use of a special mixture of sand, clay, egg whites, lime, goat hair, and ash) and the continuous cooling waters that spiralled down its side kept the ice frozen throughout the summer by evaporative cooling (just like those mist fans). They also had a trench at the bottom to catch water from the molten ice and to refreeze it during the cold desert nights. The ice was then broken up and moved to rooms deep in the ground. As more water ran into the trench the process was repeated.

Geography: These were built in the areas that had suitable condition for producing natural ice or places where there was feasibility of water freezing during the cold nights.

Major architectural elements

  • Shading wall – To avoid direct exposure to sunlight and to let the structure remain cool in the shade.
  • Provisional pool – To supply water for evaporative cooling to take place.
  • and Ice reservoir – To keep the cycle going. Freeze > Melt > Refreeze at night and so on…

The end of Yakhchal (reasons)

  • Since the advent of electricity-guzzling freezers and air conditioners, unfortunately, the use of these architectural wonders has been considered as foolishness. This is probably the reason no Yakhchals are being used for cold storage anymore.
  • Desert storms, caused a lot of erosion to these structures, especially to the ones that were isolated in the desert regions.
  • Since Yakhchal’s ice formed in the open it was prone to combining with dust and resulted in contamination. That was another reason it wasn’t considered as a choice useful enough for modern purposes.

Hit the like button if you learnt something from this article.

Harnessing The Power of Nature – Biological Data Storage

by Anupum Pant

The present storage technology

Storage technology has come long way from the year 1956 when IBM, the massive corporation started pushing this technology. Its journey started with data storage densities of orders as low as 40 bits per square inch in 1956 (RAMAC 350). This effort from their side indeed brought in great results and IBM could set a record of density record of 14.3 billion bits per inch, by the year 2000.

Today, in the year 2013, most HDDs (Hard Disks Drives) are able to store with densities of around 500 Billion bits per square inch; technology at this level has brought Terabyte sized HDDs to our computers. The research being done on increasing density of data is still a bustling area. As a result, we often see news breaking in with breath-taking new storage technologies almost every month.

Latest Stories

Just a few months back, using a technique called nanopatterning a team from Singapore was able to show 3300 billion bits per square inch. That is almost 6 times the density of a normal HDD. It means that a 1TB HDD of present size could hold 6TB if this could come to manufacturing units.

Seagate, in another story, promised data densities of the order 1TB per square inch (8000 billion bits per square inch) within the next decade. Which would enable hard drives of up to 60 TB in capacity.

A similar thing has happened to compact disks. From CDs to DVDs to Dual Layer DVDs to BluRays and several other storages that didn’t last – from zip drives to holographic storage. The data storage densities have improved dramatically.

Is it enough?

Although, our present ability to store a lot of data in small physical spaces is enough for now, to meet the future demands we will need to keep progressing with an unbelievable rate. The fact – physical storage is reaching its limit gradually, could bottleneck our progress in the future.

Biological Storage Devices

The exact storage concept used in amazing natural systems like the human brain and DNA has remained elusive for decades now. To keep up with the rapid pace of development it is important that we step up our work in this area. I think, the answer to our demands lies with the nature.

A brain, for instance, is estimated to be able to store something closer to 2.5 petabytes (or a million gigabytes). The sad part, we don’t exactly know how it stores. Moreover, we don’t even know how we could precisely calculate their storage limits. These estimates are just a theoretical calculation. We still have a long way to go.

The greatest storage device

Recent successful experiments with storage and retrieval of data in the human DNA has come with a new hope for the future. Teams at the EU Bioinformatics Institute and Harvard University have successfully stored famous speeches, photos, and entire books, and then retrieved them with 99.99% accuracy.

Being able to store data in the DNA will confer upon us three advantages. Firstly, it will be fast (very), yes, faster than the flash drive. Secondly, it won’t age with repeated storage cycles (around 10,000 years), at least not like HDDs which have moving parts. Finally, DNA will enable us to reach data densities of unimaginable levels. Imagine being able to store of half a million DVD disks in a single gram of DNA!  Technically that would amount to 700 terabits per gram (measuring in area is difficult for an entity like this). Others have reached to densities as much as 2.2 petabytes per gram.

Bring DNA drives to our PCs I say!