Weight of the Copper Tube with a Falling Magnet

By Anupum Pant

Remember I talked about Copper tube and a magnet a couple of days back? Turns out the same happens when you use an aluminium tube too. In short, a magnet (a strong one – neodymium magnet) when dropped into an aluminium or copper pipe falls very slowly, as if gravity stops acting on it.

It is due to the opposing magnetic forces generated by the electric field which is in turn generated by the magnetic field of the magnet (more in the link above).

That said, have you wondered what happens to the weight of the tube when the magnet is falling? Does it increase, decrease or remain the same? Just give it a guess and watch the following video.

The Royal Institution Explains:

Hit like if you learnt something today.

Everyone Knows Magnet in a Copper Tube, But this…

By Anupum Pant

I’m sure you know that if you let a strong magnet drop along a thick copper tube, the magnet falls in a very interesting manner. It falls slower than it normally should, delaying the span of the fall, as if gravity acting on the magnet mysteriously drops. If you haven’t heard about it, I’ll give it to you, you probably aren’t a YouTube addict, and that’s definitely good (and maybe also bad because there’s awesome stuff out there which you are missing). Just watch this, what I just said will start making sense…

Why does this happen?

OK, that’s pretty cool, but you knew about this little magnet-copper trick already, and you were expecting something more? You got it.

Whatever you just saw neither was a magic trick, nor was the Copper tube acting as an anti-gravity machine. This is pure science, can be easily explained by it. Here…

When a magnet moves quickly near a metal, it generates current in the metal. Here, current is generated in the Copper tube.
The current generated in the tube generates another magnetic field which opposes the magnetic field of the magnet and pushes the magnet upwards, away from the force of gravity. Gravity being stronger, pulls it down, but not with as much force because the magnet is being pushed in the other direction too. That’s the simple science behind it.
Still, someone else could explain it better on a page which is completely dedicated to explain it to you. [Here] and [Here]

But, you probably knew even that -The trick and the science behind it. So, there’s more for your-kind-of-people.

A new skill-toy that uses the same…

Feel flux. An amazing new skill toy that works on the same principle. Who would have thought, playing with gravity could get fun. The crowd funding campaign for it runs on indiegogo. Go fund it!