The History of 3D Printing

by Megan Ray Nichols 

3D printing has taken the world by storm in the last decade, but the technology isn’t as new as you might think. Believe it or not, the idea behind that desktop-sized 3D printer in your shop dates back to the 1980s. Let’s take a closer look at the history of 3D printing and where it might go in the future.

The 1980s — The Birth of 3D Printing

The first attempt at creating a 3D printer occurred in 1980. Dr. Hideo Kodama filed a patent in May of that year. This new 3D printer relied on photopolymer materials — liquids that could be printed, then exposed to light to harden into plastic. While this plan does sound like a viable one, Kodama never commercialized the design, and the 3D printing industry seemed dead on arrival.

In 1986, Chuck Hull invented the SLA-1 — the world’s first 3D printer that could build objects one layer at a time. In this case, the SLA-1 used lasers to cause selected chains of molecules to link together, forming plastics or polymers. The next year, Carl Deckard of the University of Texas came up with a different type of 3D printing — Selective Laser Sintering, or SLS. Deckard’s machine built an object out of layers of powder, then used lasers to melt the powder, hardening it into the finished plastic.

In 1989, S. Scott and Lisa Crump, a married pair of inventors, came up with the 3D printing technology that we know today — fused deposition modeling. The machine would melt a polymer filament and deposit it onto a substrate layer by layer until it finished the design.

3D printing had officially been born, but these early models lacked something — an easy and user-friendly way to design things for printing.

The 1990s — Computer-Aided Design

Designing something for a 3D printer might seem easy now, but imagine doing it without a CAD program at your fingertips. That’s what the early 3D designers had to do — create plans to build their objects without the assistance of a computer-aided design program. Commercial CAD programs became more readily available throughout the 1990s, though purchasing a 3D printer was still often too expensive for the home inventor.

Continue reading The History of 3D Printing

Why Do Pipes Freeze in Winter?

by Megan Ray Nichols 

It’s one thing that no homeowner wants to deal with, but it’s often the reality during cold winter months — frozen pipes. In addition to cutting off water to the home, these pipes can also burst, causing water damage. Why do pipes freeze in the winter, and what can you do to prevent them from getting cold enough to freeze? What should you do if the pipes burst? Here are some tips and tricks to help you get through the winter with your plumbing intact.

Why Do They Freeze?

First, why do pipes freeze?

Like most things filled with water, they freeze when the temperature drops below the freezing point of water — 32 degrees Fahrenheit or 0 degrees Celsius.

With pipes, there are two more variable to consider — movement and expansion. It’s harder for water to freeze if it’s in motion. That’s why lakes will freeze at 32 degrees, but it takes much lower temperatures to solidify rivers and waterfalls.

If a section of your pipe starts to freeze, the water expands. This behavior is an anomaly in nature because most liquids don’t grow when they solidify. Water, however, will become denser until it reaches a point just before freezing, then it will start to expand again. In a confined space like the inside of a pipe, this extra pressure doesn’t have anywhere to go, so it will cause the tube to split.

Continue reading Why Do Pipes Freeze in Winter?

How is Science Sculpting the Modern Athlete?

by Jackie Edwards

Sport is big business these days, with the market worth $60.5 million in North America and predicted to rise to $73.5 billion in 2019. Sports is not only a moneymaker for event promoters and the media; it is also increasingly being seen as a top career choice for those with the talent, drive, and commitment required to succeed. New developments in sport have shown that success is not all about the individual athlete. In popular sports like tennis, football, or golf, science & technology are playing an important role in helping competitors perform at their full potential. In this post, we look at just a few ways that science is changing the way we play and compete.

Swing Training Technology for Golf

You would need to be a master physicist to work out the exact angle at which to position your club when playing golf, but science and technology are making it a whole lot easier with swing training technology, which brings real-time body positioning analysis to everyday golfers with the help of a handy app. The app ‘tells’ golfers exactly how to position their body and gives them top information on how to do better next time. Of course, the app won’t fix deeper problems such as weak muscles in the shoulder and back. Top level athletes will also need to regularly carry out specific training programs for golf, which include strength training for key muscle groups. In essence, performing the right swing depends on issues like back strength, so you may need to address this first to perfect your game.

Head and Neck Support for Motor Sports

Dale Earnhardt’s death on the track at the Daytona 500 race revealed the extent to which the head and neck area are vulnerable in motor sports. HANS devices have been created by scientists to stop the head from whipping forwards and backwards in the event of an accident, and to lend more support to the neck. The device is U-shaped and is positioned behind the neck, with two ‘arms’ that extend over the pectorals. Over 140,000 devices have already been sold worldwide.

Wearable Computers and Hawk-Eye Camera Systems

Wearable computers are allowing both players and managers to assess a player’s level of fatigue, hydration levels, etc. This type of information is vital to avoid heart attacks and other major health events from taking place on the field. Smart fabrics will enable athletes to glean even more information, including heart function data and movement of the body’s center of mass. Scientists have stated that the future could take us beyond wearables. The Hawk-Eye camera system is currently used to obtain information on running biomechanics and other metrics during games of elite players. The NBA, meanwhile, relies on Second Spectrum’s computer vision technology to obtain information about player positioning and other 3D data such as ball and referee positioning.

We have presented just a few ways in which science and technology are enabling athletes to perform more optimally, but also to stay safe. Wearable devices and fabrics, aerial camera systems, and new safety gear are making sport a much more scientifically accurate and appealing pursuit. Information is power, and nowhere is this truer than on the field or track.