A Scientist’s Way of Making Super-Strong iPhone Cases

By Anupum Pant

Bulk Metallic Glasses (BMGs) A.K.A Amorphous metals, give you the goodness of both metals and glasses. They literally are glasses made out of metal. Unlike the most crystalline metals, BMGs are made by cooling certain liquid metals very quickly to lock the disordered glassy structure in place. They aren’t crystalline like your everyday metals and instead have a structure like that of glasses – disordered.

Some of these BMGs have amazing properties. Like super high hardness, about 3 times the hardness of steel is one of the most alluring properties they have.

They’ve been around since the 60s, and mass producing them has always been tough. Until now, BMGs were never used for something as ordinary as a smartphone case. But the recent innovation in manufacturing coming from a Materials scientist at Yale will probably soon bring to the market these new iPhone covers that’d be 50 times harder than plastic, or 10 times harder than Aluminium, and almost three times the hardness of steel.

This Green Slime Like Thing is a 3000 Year Old Plant

By Anupum Pant

It looks like moss, but it isn’t. Nor is it slimy.

This gooey or slimy looking thing is actually a plant which grows in Bolivia, Chile, Argentina and Peru, up in the Andes at altitudes between ten to fifteen thousand feet. Believe it or not, some of these plants are more than 3000 years old. Yes, they are one of the oldest living organisms on the planet earth – older than the golden age of Greece.

Even though the plant looks slimy goo-like from a distance, when you go closer, it is actually solid and dry to the touch. The surface of the plant consists of densely packed tens of thousands of tiny buds and flowers which make the surface feel like a pillow. That is the reason it is also  known as the Andes Pillow. In fact the surface is so stiff that a person can lie on it and the plant won’t get crushed.

It is sort of a cousin to parsley and carrots. And it is interesting to note that the plant smells like mint. Locals often boil it in water and use it to cure muscle pain.

Llareta grows extremely slowly. It grows about 1.5 cm every year. The ones which are about 2.5 to 3 meters in size can be said to have grown for hundreds of years to reach that size.

Since Llareta is dense and dry, it burns like wood, and has been known to be used by the climbers/hikers to make fire. Some say that it was also used in steam engines instead of coal. This careless burning of the extremely slow-growing living museum has endangered their long-term survival.

via [RadioLab]

The Leaping Shampoo Trick – Kaye Effect

By Anupum Pant

This is really interesting and I can’t explain why. You’ll have to see it for yourself.

Long time back, researchers at the University of Twente in The Netherlands thought of something very weird. They decided to drop a thin stream of shampoo from a height of about 20 cm, ended up discovering an absurd physical effect and winning great accolades for it – The Kaye effect.

The seemingly weird effect can fairly easily be achieved at home by dropping a thin stream of shampoo on a relatively hard surface. In individual steps, this is what happens when you do it:

  • As the stream gets collected, it forms a little shampoo heap.
  • Amazingly, and counter-intuitively, a secondary stream ejects off the heap.
  • The mythical secondary stream becomes bigger, shoots further.
  • And finally hits the incoming stream – this collapses the Kaye effect.

Of course, everything happens really fast. But, if you look at it on extremely slowed down film, you’d see the individual steps happening one after the other.

True, the secondary stream collapses too quickly, scientists weren’t happy about that either. So, they tried tilting the hard surface slightly to achieve a stabler version. Lo! And they had a stable Kaye effect.

This happens because due to certain physical forces the viscous liquid becomes slightly less viscous temporarily – they call it shear thinning. As a result, it causes a new stream to emerge. May be the same effect could be achieved with other thicker liquids like lava, ketchup, whipped cream, blood, paint, and nail polish. But, then lava is too dangerous, and others (barring blood and paint) seem to be too thick. I’m guessing, dropping thicker ones from a higher place could make this happen.

If you find this interesting,you’d definitely love the egg and milk effect, also the chain of beads defying gravity.

Here, watch it on video.

The Hard Boiled Egg Sprinkler Mystery

By Anupum Pant

Background

Cracking an egg to check if it is boiled or not is not a very intelligent way. While many know that spinning an egg can be used to determine whether an egg is a boiled one or not, I’m amazed by the sheer number of people who aren’t still aware of this trick.

Just in case you are one of those who don’t know this, it works like this –  try spinning an egg on a smooth surface. If it spins well and stands up vertically, it is a boiled egg. If it doesn’t spin properly, you can say that it isn’t cooked….as simple as that.

Tip: There’s a way to check if your eggs have gone bad without risking opening it up to take in the nasty stench. [Here]

Boiled Egg Sprinkler Experiment

Now that I’m sure you know about the boiled egg spinning trick I can tell you about this simple experiment you can do at home. Besides dealing with an angry mom, it carries no other risks.

Here’s what you do – Get some milk and pour it on the kitchen counter. Now, boil an egg if you don’t have a boiled one already. Make sure it is hard-boiled by doing the spinning test. Next, spin it on the milk puddle you created on the counter. Nasty mess ensues…

Yes, there sure is a mess afterwards. But something amazing happens when the egg spins on the milk puddle. When it spins, the egg first stands up and then the milk starts rising on the surface of the egg till it reaches the equator and then the milk gets sprinkled at the equator in a very beautiful manner. It’s like a skirt of milk. Different sprinkling effects can be obtained with different spinning speeds.

Until now, no one knew why this happened. The rotating egg would suck up milk like magic and create a fountain of milk. The exact physics part of it wasn’t known until some researchers at Brigham Young University decided to figure out why this happens. I, on the other hand didn’t even know this sprinkling thing could be done. Nice to know.

Turns out, there’s nothing peculiar about milk and eggs that creates this effect. The same thing can be done with an 8-ball or any other ball for that matter. On the other side, it works with other liquids too. For instance, if you use a liquid with a higher viscosity (glycerine and water mix), the rotating ball could create not just sprinkles, but whole sheets of liquid getting flicked off at the equator. Some times if the fluid is viscous enough and the ball is spinning fast enough, sheets spanning several feet can be seen getting flicked off the equator of the spinning balls! It’s like a motor.

Here is an amazing hi-speed video of this happening in the laboratory and the elegant physics behind has been explained too. Watch it here:

After having watched the explanation, I can say one thing for sure: There’d be no sprinkling if this was done on Superfluid Helium because superfluid helium would have no viscosity and it wouldn’t rotate with the ball!