Chladni Figures

By Anupum Pant

If you take a surface, membrane with a layer of loose particles or certain liquids on it, you’ll see that these particles get arranged in beautiful patterns if the membrane is made to vibrate with varying frequencies.

This phenomenon has been known for a long time now, probably since the time when early human tribes used to put grains of sand on drums made of taut animal skin. Since then Leonardo Da Vinci and Galileo Galilei have been known to have observed this phenomenon by hitting or scraping a surface covered with visible particles and .

Later, with information gleaned from Galileo’s and Leonardo’s notes, in the year 1680, Robert Hooke, English scientist from the Oxford University, devised a simple equipment which demonstrated this effect much clearly. He made a glass plate covered with flour to vibrate with the help of a violin bow. And observed beautiful patterns.

Much later, Ernst Chladni explained these figures using mathematics, spread it all across Europe and made a lasting impression on The French Academy of Sciences. These patterns thus came to be known as Chladni figures.

Brusspup, a YouTube channel known for it’s amazing videos demonstrates these Chladni figures on video.

Today, this study, which makes sound and vibration visible to the naked eye, is called Cymatics.

Liquid Nitrogen Experiments

By Anupum Pant

Short of time and keeping up with a busy schedule, I looked around for something interesting to learn today and I found this cool video of very interesting experiments that were done with liquid Nitrogen on ScienceDump. There are 11 such experiments that are shown in the video…

The first one is a Liquid Nitrogen explosion, something like this professor did some time back. To demonstrate his students how Liquid Nitrogen expanded, he blew up a container of Liquid nitrogen to toss 1,500 ping-pong balls. [Video]

Is an Aeolipile, or a rocket styled jet engine made using liquid nitrogen A.K.A Hero engine. Liquid nitrogen heats up inside a container, expands and comes out of tiny orifices to create a jet that makes the container spin. A simpler version of it can be done using a ping pong ball (again). [Video]

The third one simply is a demonstration of what happens when you eat a biscuit dipped in Liquid Nitrogen.

Fourth one again is something you’ll have to see to get really impressed by what some solids at very low temperatures can do. A nice demonstration of something similar is done on this video. [Video]

Fifth one! Oh, the Leidenfrost effect. We’ve talked enough about it already. [Here]

Others are all pretty interesting too. The eight one probably takes the cake – brings back a dead creature to life, or does it…. But I won’t spoil them for you. Watch the video now…

The Weissenberg Effect

By Anupum Pant

Remember the time we talked about a boiled egg spinning on a pool of milk? If you don’t then it’s good to know that if you do spin a hard-boiled egg on a pool of milk (or any relatively viscous liquid) the milk mysteriously climbs the side of the egg, reaches the equator, and then sprinkles around beautifully. It’s fun to see it happen. This is something similar…

The thing we see today is called the Weissenberg effect and this is how it works.

You take a spinning rod and put it into a solution of liquid polymer (which is usually very viscous). And when you do that, you see that the liquid polymer magically climbs the walls of the rod.

Some liquids reach a little high and never beyond. While others can climb up really high. The difference in heights to which different liquids can climb to is demonstrated in the following video very clearly. The three liquids used in it are as follows:

  1. Guar gum solution crosslinked with sodium tetraborate
  2. Pancake batter
  3. and Dyed glue crosslinked with sodium tetraborate.

[Read more]

The Leaping Shampoo Trick – Kaye Effect

By Anupum Pant

This is really interesting and I can’t explain why. You’ll have to see it for yourself.

Long time back, researchers at the University of Twente in The Netherlands thought of something very weird. They decided to drop a thin stream of shampoo from a height of about 20 cm, ended up discovering an absurd physical effect and winning great accolades for it – The Kaye effect.

The seemingly weird effect can fairly easily be achieved at home by dropping a thin stream of shampoo on a relatively hard surface. In individual steps, this is what happens when you do it:

  • As the stream gets collected, it forms a little shampoo heap.
  • Amazingly, and counter-intuitively, a secondary stream ejects off the heap.
  • The mythical secondary stream becomes bigger, shoots further.
  • And finally hits the incoming stream – this collapses the Kaye effect.

Of course, everything happens really fast. But, if you look at it on extremely slowed down film, you’d see the individual steps happening one after the other.

True, the secondary stream collapses too quickly, scientists weren’t happy about that either. So, they tried tilting the hard surface slightly to achieve a stabler version. Lo! And they had a stable Kaye effect.

This happens because due to certain physical forces the viscous liquid becomes slightly less viscous temporarily – they call it shear thinning. As a result, it causes a new stream to emerge. May be the same effect could be achieved with other thicker liquids like lava, ketchup, whipped cream, blood, paint, and nail polish. But, then lava is too dangerous, and others (barring blood and paint) seem to be too thick. I’m guessing, dropping thicker ones from a higher place could make this happen.

If you find this interesting,you’d definitely love the egg and milk effect, also the chain of beads defying gravity.

Here, watch it on video.

Superfluid Helium is One Strange Liquid

By Anupum Pant

Helium can’t be frozen into a solid (at atmospheric pressure) – the very property which allows it to go from a simple liquid Helium state (warmer) at minus 269 degree C – where its boiling and evaporating quickly – to a much calmer Liquid Helium II stage (cooler).

Liquid Helium  II is obtained at a temperature lower than minus 269 degree C, at about minus 271 degree C – known as the Lambda point.

Liquid Helium II is a superfluid. Superfluid Helium has no viscosity. It behaves extraordinarily. As a summary of how extraordinary superfluid Helium is, here is a list of things it can do:

  • Superfluid Helium will leak out of solid ceramic containers which have extremely tiny pores that no other liquid can penetrate.
  • If it is taken in a container and the container is spun around the central axis, the superfluid will not spin.
  • Somehow if you manage to spin it, because it has no friction, it won’t stop.
  • It can climb walls of a container by forming an extremely thin film and defying gravity.
  • It can produce an eternal frictionless fountain.
  • It can conduct electricity better than some of the best metal conductors like Copper! It’s a big thing for a liquid to be able to do that.

Here is a summary video you can watch below.

But, I’d suggest watching the whole documentary here. It explains everything that superfluid helium can do in nice detail. Also, the researcher makes sure it is in a very simple language…

It Sure is Magnetic, But is it Solid or Liquid?

By Anupum Pant

Figuring out if glass is a solid or liquid is pretty straight forward. This putty in the video however, behaves a lot like pitch (the same thing that was used for the world’s longest continuously running experiment). On applying a greater and abrupt impact, it shatters like a ceramic. While it flows like a liquid if you let it. But that is not even the point.

The point is, it can be magnetized! And it sure is another one of those awesome science toys you can have on your desk all the time. By the way, the other ones are Gombocs, constantwidth objects and feel flux. It must so much fun to play around with such a gooey magnetic material (putty). Some good soul will gift it to me for my birthday…may be.

It stretches, bounces, breaks, flows, can be magnetized and what not! It’s like the ferro fluid, but more awesome. Even this, like ferro fluid, has very very tiny magnetic particles dispersed in a putty like substance which makes it magnetic.

Who wouldn’t want to try out that Neodymium magnet swallowing trick! Since it looks like it’s live, they call it the magnetic thinking putty. Perfect name, I must say.

Dancing Drops of Water and Dipping Hands in Molten Metal

By Anupum Pant

When you sprinkle water on a hot pan, you’ll find that the droplets start dancing on the surface, as if there was no friction at all. From far, this effect looks a lot like water droplets on a lotus leaf (a super-hydrophobic surface). But, the physics behind this phenomenon is completely different. Read on to find out what is the mystery behind these dancing drops of water.

The Leidenfrost Effect

Why does this happen?
Unlike the drops on a lotus leaf, this happens at a particular temperature for a specific liquid. Different kinds of liquids display this effect at different temperatures.
For water, at a temperature when a small amount of water in contact with the pan gets heated enough to form a thin-film of vapor below the drop, water is no longer stuck on the pan (water sticks to some surfaces due to low surface tension). The drop has a thin vapor film below it which enables the drop to move around on the film. The formation of this vapor film is a continuous process, till the whole drop turns into water, one film at a time. This is called the Leidenfrost Effect.

Some liquids like liquid Nitrogen are extremely cold. At normal room temperature, they start boiling. A normal room’s floor is like a hot pan for liquid Nitrogen. So, it forms these dancing drops on a floor which is just at room temperature. You can try this yourself – If you can find some liquid Nitrogen, you can simply drop it on the floor and watch droplets moving effortlessly. They won’t stop moving!

Dipping hands in Liquid Nitrogen

The temperature of liquid Nitrogen is around -195 degree centigrade. It is one of the coldest substances and is used with extreme caution in industries and laboratories. If it touches you, your skin can easily get burnt. Yes, burnt – at extremely low temperature. It could probably also make the dipped limb useless for life. So, you shouldn’t try stuff with liquid Nitrogen at home.

But, it turns out, you can safely dip your hand in it for a small amount of time and return unharmed. Thanks to the Leidenfrost effect. Our hot-pan like hand – for cold liquid Nitrogen – makes a thin film of vaporized Nitrogen around the whole hand. This film, protects our skin from the ill effects of extremely cold temperatures. Still, there is no reason for you to try this. It has been done already.

The crazy duo from Myth Busters tried this with molten lead. It worked!  They, of course had to wet the finger with water – for the vapor film formation.

Water flowing uphill

Recently, an undergraduate research student group from the University of Bath found out a way to manipulate the movement of water on a specially designed surface, using this phenomenon. They found that machining ridges on the surface (and heating it) would make the thin vapor films under water droplets move in such a way, that they could use it to propel drops against gravity. They were able to demonstrate this by showing water moving uphill on a slope. It is enthralling to see it for yourself. I’ve attached their video below.

Hot Ice

By Anupum Pant

Visit blogadda.com to discover Indian blogs
For years we’ve been subconsciously conditioned to think of something cool when the word ‘ice’ is heard. But, does ice always has to be cool? How much more interesting, than water-ice, can ice be?

What is it?

The name: Hot ice isn’t solidified water, it isn’t anything even close to water. Neither is hot ice, hot. It is just a common name for Sodium Acetate Trihydrate. At room temperature, this substance looks like ice crystals and if heated, it starts turning into a transparent liquid. Since, the ice like crystals are formed at a relatively hotter temperature than water-ice, it is called hot ice.

Everything freezes. While metals ‘freeze’ at extremely high temperatures and carbon dioxide freezes at extremely low temperature, Sodium acetate freezes at 54 degrees centigrade. But, that is hardly anything interesting about it. There is more.

Touch water and turn it to ice

Think about water: Cooling water, beyond its freezing point without it getting solidified, can be done and it is called ‘super-cooling‘. This can be done by not letting water (distilled water) find any ‘nucleation points’ or simply by using an extremely clean tray to freeze it. Now, water remains in a liquid state despite being cooled under 0 degree centigrade. At such a state, if water is disturbed, say using your finger, a chain reaction starts and the water freezes almost instantly. But, doing it is tough.

Making hot ice at home – The same thing that happens with super-cooled water, can happen with sodium acetate. Touch the liquid sodium acetate and it magically turns to ice, it is indeed a fascinating process to watch (watch in the video below). And can be done fairly easily. Moreover, you are not at a danger of getting poisoned in any way. This is the reason it is used to make hot ice. It can be made at home using vinegar, baking soda and a steel vessel.