Biological Darkmatter

By Anupum Pant

To most of us, looking at things from a distance, it often seems like the age of exploration is over. It seems like there’s not much left to be discovered. Only a few who strongly believe that the age of exploration is far from over, and work hard to keep exploring, end up finding new things.

Take for instance the part of ocean that remains unexplored and unseen by human eyes today. According to NOAA’s website this unexplored part is about 95%, even today!

In fact, it is estimated that 96% of the universe is made up of some mysterious thing (called the dark matter) which we haven’t even started to figure yet.

If you think that is taking it too far, we don’t even know our bodies completely yet. Just last year (in 2013) a new body part in the human body was discovered!

Nathan Wolfe, a biologist and explorer, talks about how most (as much as 40-50% of it) of the genetic information found in our own gastrointestinal tracts doesn’t classify under any kind of biological form we have ever known – Not plant, animal, virus, bacteria or fungus. Biologists call it the biological dark matter.

genetic information

There are unknowns all around us and they are waiting to get discovered.

Stopped Clock Illusion

By Anupum Pant

When you quickly move your eyes to focus on the seconds hand of an analogue clock, have you ever noticed that the first second you see actually seems to linger for a slightly longer time? Yes, it does. And there’s a reason why it happens.

When you rapidly move eyeballs to focus from one point to the another, it’s called a Saccade. If you ever try doing this rapid movement with a camera, a motion blur occurs in between the first point focus and the last point focus.

Unlike cameras our eyes (work closely with the brain) has a built-in mechanism to erase this motion blur. The brain erases all the motion blur during those few milliseconds and replaces the motion blur frames with the final image in the end.

This is why you see the longer first second when you quickly focus your eyes on the seconds hand – the stopped clock illusion or chronostasis. This also explains why you can never see your eyeballs moving when you try to spot their movement while staring at your own eyes on a mirror.

Michael Stevens from Vsauce explains…

Sea Glass – Is It Trash or What?

By Anupum Pant

In the Glass Beach, a beach in MacKerricher State Park near Fort Bragg, California, like the name tells you, you’d normally find too many glass pieces on the beach. These glass pieces that people often find in beaches like these, aren’t exactly those sharp shards of glass that are sharp enough to harm you. Rather they are physically and chemically weathered pieces of glass –  round and small.

sea glass 4

This type of glass is called sea glass and has been a fancy of those hobbyists who like collecting these pieces to make beautiful adornments.

This kind of glass, often found on some beaches usually starts as shards of broken glass from dump or other such sources. In about a span of 1-2 years, the tumbling and weathering makes these pieces smooth and rounded. And then they are collectively known as “genuine sea glass

At this particular beach in California, the beach glass that has formed over the years, first started coming in when residents who lived close to the beach started dumping garbage into the beach. Local clean up services tried to clean up the mess, but most of it had already gone in for natural weathering by that time.

Soon after the clean-up services came around, the beach became a great place for hobbyists to collect these naturally weathered beautiful glass pieces. All the trash that was first thought to be a mess, now became a tourist attraction – Naturally weathered genuine sea glass was a thing of natural beauty now. And then this smuggling of sea glass by tourists had to stop. First the mess had to stop, now the mess being taken away by tourists had to stop.

And once the glass has started to go away, now there is a move to replace all the glass – that was once considered garbage!

[Read more]

Screaming Coin and a Singing Spoon

By Anupum Pant

Dry ice, or Cardice – as British researchers call it, is a solid form of carbon dioxide. When carbon dioxide is cooled below temperatures of -78.5 degrees centigrade, the gas gets directly frozen into a solid form. -78.5 degrees centigrade is extremely cold, and handling dry ice without proper protection can be very dangerous – could cause frostbite / burns. The point being, it’s extremely cold.

Since it’s too cold compared to something at room temperature, even everyday objects at room temperature can make it vaporize. A simple metal coin at room temperature would feel like a hot pan to dry ice. So, when a coin is shoved into a piece of dry ice, it creates a funny sound, just like water would, on a very hot pan; or, you could say the sound be very much like a hot metal ball being dropped into a cold bath of water (the temperature difference being much less in this case, of course).

This is how it works: The metal piece at room temperature vaporizes some amount of carbon dioxide from the piece of dry ice when it comes in contact. There’s a pressure difference (Bernoulli’s principle) associated with this process and the gas tries to escape. This makes the metal vibrate very fast, creating that funny sound. This is how it sounds…

Metals work best because they have a good thermal conductivity. For the sake of trying it out yourself, if you have a piece of dry ice lying unused, you could dip a spoon in hot water and make it touch the piece of dry ice. A slightly warmer spoon will probably give you a better effect. And then the spoon will be singing…

Nightvision Eye Drops

By Anupum Pant

A deep sea dragonfish, or specifically Malacosteus niger, has a special pigment in its eyes which helps it see better in the deep  dark sea. This pigment, isolated from the eyes of this dragonfish, in the year 1990, was found to be a derivative of Chlorophyll.

The marine biologist Ron Douglas of City University London, who was able to isolate it then, found that the pigment gave this fish an ability to absorb red light. Of course It did seem abnormal to find a chlorophyll derivative inside an animal’s eye. Moreover, the animal had learned to use it to enhance its vision! At that time it was conjectured that the chlorophyll came to the fish through some bacteria, and it somehow found a way to put it to good use.

A couple of years later (in 2004) an ophthalmic scientist at Columbia University Medical Centre read about it and started testing the derivative on other animal’s eyes. Recently, by using it on mice and rabbit eyes, the researcher has been able to enhance their night vision, by enhancing their eye’s ability to absorb red light.

It is highly possible that, in the near future, the pigment could somehow be made safe for human eyes, and be used to enhance their nightvision. Soon a better nightvision could be as easy as ingesting a pill, or using eye drops made out of this derivative. How great would it be for the special ops team! Of course, the U.S. Department of Defence is very interested, and has started funding his research now.

[Read more]

Best Explanation of Quantum Entanglement

By Anupum Pant

I don’t know a lot about Quantum entanglement, but I still think it is very interesting. So much that a PC game which contained of this concept, immediately landed on the list of my most favourite games. Yet, it sure is a tough thing to get into your head.

Fear not. Associate Professor Andrea Morello of  University of New South Wales (UNSW) is here to explain it to you, in this video which people have started calling – “The best explanation of quantum entanglement so far”. I have to admit it, I am still not sure if I really understand what the professor tries to explain in the best explanation ever video.

In very simple words entanglement works like this. If two objects are entangled with each other, and if you separate them by any distance (even place them at the opposite ends of the universe), then they’d still remain connected very peculiarly. Entangled particles even separated by a massive distance would still be connected – as in, whatever you did to one of the particles would instantly happen to the other particle at the other end.

The instantaneous reflection of changes done on the first particle to the other particle happened faster than light. And Einstein didn’t like that, he called it “spooky action at a distance”. Tom me, this video explains it better…

Turning Lead to Gold

By Anupum Pant

Hunt for a process to convert a brick of lead into gold was probably the most elusive quest during the olden times when alchemy was around. However, alchemists, who were mostly dismissed as pseudoscientific quacks, actually did some good ground work to make their dream of turning lead to gold into a reality.

And then came the 20th century, when transmutation of one element to another became fairly common. In fact nuclear reactors started working on the same principle. So, besides breaking of uranium atoms and combining of hydrogen atoms to form helium, did it actually become possible to transmute lead into gold using the same process?

Sure it did. Today it is totally possible to make lead (Atomic number 82) release 3 protons to turn into gold (Atomic number 79). Not just in theory, people have actually done it successfully in laboratories. For one, Glenn Seaborg is said to have done it in the year 1951.

To do this, you’d need a particle accelerator. And if you plan to use it as a get rich quick scheme, then you are in for a bad news. Transmuting lead to gold in a laboratory consumes massive amounts of energy, even if you have to do it in extremely minute volumes. So much that the price of doing it exceeds the price of gold by a very big amount. Also, only a very minute volume of gold comes out this way.

To make a single ounce of gold this, it would cost you one quadrillion dollars. You could just buy the same amount for $1300 instead.

Mastering The Best Useless Skill – Reading Text in Binary

By Anupum Pant

The next time you see a series of 0s and 1s, you will no longer need to take it to a computer and feed it in to read it. Of course you might never have to read a text in binary, and that is the reason this might be the most useless skill you could master right away. I’m doing it anyway.

Tom Scott from YouTube  recently posted a video on YouTube where he teaches you how to read text written in binary. It’s fairly easy. The only thing you need to practice, if you don’t already know it, is the number that is associated with each alphabet (Like it’s 1 for A and 2 for B and so on).

via [ScienceDump]

Mike The Headless Chicken

By Anupum Pant

Mike, a Wyandotte rooster, born in the month of April (year 1945), was an average male chicken living an average chicken life at some barnyard in Fruita, Colorado. On September 10th 1945 this changed. The rooster was no longer a normal male chicken of some random barnyard. It was making news.

The second world war had ended and families no longer were required to cut down their consumption of meat. So, a farmer’s wife, Clara Olsen decided to treat her family with a nice meal after the numerous sacrifices made in the second world war. She asked her husband, Lloyd A. Olsen to chase down mike and kill Mike for the night’s meal.

Lloyd did exactly that. He took aim and cut off Mike’s head. Normally, like all the chickens make erratic movements after getting cut, Mike with no head on his body started running, spewing blood around too.

Unlike all the chickens who spurt out blood and no longer have enough of it to remain alive, Mike’s bleeding stopped after a while and he stood up. Now Mike was a headless chicken moving around the barnyard. With no eyes, or even a head for that matter, mike started walking around and running into objects.

Mike the headless chicken feedingSoon, Mike adapted to this situation and started living a normal life. Except, he was a chicken without a head. Mike went on to live for 18 months, sustaining on food and liquids that were dropped using a dropper into the hole in his neck. Mike sure had the will to live.

Mike was a celebrity now. Life magazine published a piece on him. People from all over the country came around, just to have a look at a live headless animal walking around like nothing had happened.

Mike, Mike, where is your head.
Even without it, you are not dead!

Was the song little girls then started singing while playing around at school

Confused, the farmer took Mike to the University of Utah to get him checked by researchers. It was found that the brain stem at the top of his neck didn’t get cut. He still had the part which controlled his motor functions, and that was, more or less, enough for a chicken to lead a headless life. Basically, just enough to move around and continue normal body functions – like to digest food and respond to stimuli.

Even today, Mike has a festival named after him –  Mike The Headless Chicken Festival – which is Fruita’s highlight during the year.

via [RoadsideAmerica]

 

 

The Birthday Paradox

By Anupum Pant

Imagine you meet a random person in the street and ask him/her when is their birthday, there’s a huge chance that the person’s birthday will not be the same as your birthday. In fact, the probability of both your birthdays being on the same day is around 0.27%. Fat chance. At the back of our heads, this is something that is very clear to all of us.

Again, if you repeat this by asking about 22 people the same question, the chance of you finding someone having the same birthday as yours is still around 5%. Too less. This is too is a very intuitive piece of information.

But consider this. If I put all of the 22 guys and you in a room, there’s a big chance that 2 people in that room will have the same birthday – a 50% chance. Moreover, if there are 70 people in the room, this chance increases to about 99.99%. This is called the birthday problem or the birthday paradox.

So, what changed when 20 people went into the room? It was just the fact that in the room, we are picking 2 people from a group of 23 people. That is equivalent to this – everyone is asking everyone their birth dates. Everyone doing it simultaneously makes the probability much higher. The probability of two people sharing a birth date among a group of 23 people is far higher than you alone going around and asking all the 22 people, and finding someone having the same birthday as your’s.

Suppose there are 200 people in the room. The probability of 2 people sharing their birthday is massive (and yet not definite). There is in fact a 99.9999999999999999999999999998% chance!

1024px-Birthday_Paradox.svg

Finally, if you had 367 people in a room, at least a pair among these 367 people in the room would definitely have the same birth date. The 99.99% chance shoots up to a definite (100%) probability if there are 367 people in the same room. Think about it for a minute.

Nanokids and Nanoprofessionals

By Anupum Pant

In the year 2003, a group of researchers headed by James Tour at Rice university designed and synthesized a series of organic molecules that they thought would get kids interested in chemistry.

These organic molecules resembled human figures and were named Nanoputians – A portmanteau of nanometer (a unit of length used to measure extremely tiny distances) and Lilliputian (the tiny human-like fictional characters from Gulliver’s travels).

The synthesized nanokid molecule basically consisted of two benzene rings and a couple of carbon atoms for its body. For the limbs  acetylene units ending in an alkyl group were used. The upper body and the lower part were both created separately, and were joined using Palladium and Copper compounds. Here’s how…

nanokid body parts

The head of a basic Nanoputian was a 1,3-dioxolane ring. However, after using an advanced microwave irradiation technique, the team created a couple of other variants (called Nanoprofessionals) to replace the Nanokid’s head. Here is what the series of head variants that were created. As if that wasn’t enough, there is a nano ballet dancer too.

nanokids and nanoprofessionals

Now, in the scientific community, James and his team are better known for synthesizing a much more cooler thing – A nanocar. The nanocar they synthesized was a single molecule car which could be pushed around using a scanning tunnelling microscope. And another one which is fuelled by light!

There are a couple of other cool molecular machines they’ve made too.

via [FutilityCloset]

Wilson Primes

By Anupum Pant

Thanks to the guys at Numberphile for introducing me to Wilson primes. Although the piece of information that describes Wilson primes itself has more or less no practical use, I still think it’s a good thing to know.

The first thing you need to know is that all prime numbers follow this rule – If you take a prime number P and put it in the following equation you get a number that is perfectly divisible by the prime number P.

The equation: (P − 1)! + 1 = Q

Note: ! is a sign used for factorial. That means P! is equal to the product of all natural numbers smaller or equal to P. So, for example, 3! = 3 X 2 X 1

This rule is valid for all prime numbers and no composite numbers follow it. So, for instance, if you take a composite number for P, the number you get after you put it in the above equation is never divisible by the number itself. This is called the Wilson’s theorem.

Wilson primes (P) are a few special numbers which can divide Q in the equation above two times. So, for example, since 5 is a Wilson prime, you get 25 if you put it in the equation above. And 25 can be divided perfectly by 5 once, and the result (quotient 5) can be divided again by 5 to get a whole number.

Now, for Wilson primes here’s the deal – 5, 13 and 563 are Wilson Primes. And a very interesting thing to note here is that, in spite of all the computing technology we have in the world, these are the only three Wilson primes we know yet.

Mathematicians are pretty certain that there are several other Wilson primes waiting to get discovered, probably infinitely many. But one thing is for sure, below the number 20,000,000,000,000 5. 13 and 563 are the only three which exist.

The Largest Object in the Solar System

By Anupum Pant

On November 6th 1892, after being spotted by a British astronomer Edwin Holmes, comet Holmes was not seen again for several decades. Thus it came to be known as the lost comet. Out of the blue, more than 70 years later, the comet was again seen in the year 1964.

Now it is known that comet Holmes was captured by Jupiter several thousand years ago, and it never went back to the Kuiper belt. It is a Jupiter family comet. Every 6.88 years, the comet orbits the sun.

Even this year, on 27th of March, it was one of the most bright comets of the year. But it was something that happened back in the year 2007 which made it one of the most popular comets in the sky.

For a brief period, comet Holmes, which is also a part of our solar system, became the largest object in the solar system. Yes, even larger than the sun!

On November 9th 2007, the diameter of comet’s coma – a cloudy region surrounding the comet made up of very tiny shiny ice and dust particles – measured about 1.4 million km. The sun’s diameter rounded to the nearest hundred is estimated to be 1.392 million km. Agreed the coma wasn’t as massive as the sun, but the size of it did measure slightly more than the sun at that time.

It indeed is a great achievement to become the largest object in the solar system (for some time) for an object that is just a tiny mass of ice and dust that is only about 3.6 km wide.

That day, the cloud around it erupted due to a mysterious outburst which still puzzles scientists. Such outbursts have been seen in the past too and are thought to have been originated as a result of its collision with a meteor (or probably due to an internal steam eruption).

via [space]

Chladni Figures

By Anupum Pant

If you take a surface, membrane with a layer of loose particles or certain liquids on it, you’ll see that these particles get arranged in beautiful patterns if the membrane is made to vibrate with varying frequencies.

This phenomenon has been known for a long time now, probably since the time when early human tribes used to put grains of sand on drums made of taut animal skin. Since then Leonardo Da Vinci and Galileo Galilei have been known to have observed this phenomenon by hitting or scraping a surface covered with visible particles and .

Later, with information gleaned from Galileo’s and Leonardo’s notes, in the year 1680, Robert Hooke, English scientist from the Oxford University, devised a simple equipment which demonstrated this effect much clearly. He made a glass plate covered with flour to vibrate with the help of a violin bow. And observed beautiful patterns.

Much later, Ernst Chladni explained these figures using mathematics, spread it all across Europe and made a lasting impression on The French Academy of Sciences. These patterns thus came to be known as Chladni figures.

Brusspup, a YouTube channel known for it’s amazing videos demonstrates these Chladni figures on video.

Today, this study, which makes sound and vibration visible to the naked eye, is called Cymatics.

The Hexagon Storm

By Anupum Pant

Saturn is probably the most beautiful planet we have in our solar system. But did you know, Saturn is also home to a very peculiar phenomenon which has never been seen anywhere else before – a hexagonal hurricane.

A hurricane in the shape of a hexagon (six-sided), not circle. If that doesn’t blow your mind, try this – the storm is an incredibly huge – 30,000 km across! And it is about 100 km deep, with winds of ammonia and hydrogen moving at  more than 320 km per hour. It is large enough to swallow four planets of the size of Earth. This is what the Earth would look like if it were kept beside the storm.

saturns hexagonal storm and earth comparision

It’s only natural for hurricanes to be circular. And yet, researchers at Ana Aguiar of Lisbon University have been able to show that the hexagonal storm raging in the north pole of Saturn is also very natural too. In the year 2010, they proved  to by reproducing a similar effect in the laboratory by using rotating liquids.

According to them, a very narrow jet stream that goes about the hurricane’s edge creates a couple of other tiny hurricanes. These little storms are the ones that push the larger hurricane’s borders and give it a hexagonal shape.

In the 80s, the storm was first spotted by the twin voyager spacecraft.