Seeing Sound

You can skip everything under this subheading

Note: In the past, I’ve been requested by my readers to keep the articles on AweSci short. It made sense. Since I write one article everyday, for readers, it definitely is easier to read and digest a smaller article, day in and day out. Thanks to the rate at which short attention span is being nurtured by the internet, not all have the appetite to take in bigger pieces everyday.

I see it this way – doing a very little thing everyday religiously, compounds. It makes a huge difference in your life. Even devoting 2 minutes a day for a single thing makes big changes over time. Here, I’m doing more than an hour everyday! If you read these daily, you are devoting around 10 minutes a day to learn something. You’ll do great in life!

At the same time, smaller articles of about 300-500 words are good for me too. By sticking to smaller ones, I can accomplish my own goal of learning and writing about one new thing everyday, by doing less. Also, composing smaller articles doesn’t take a lot of time which allows me to take care of the primary daily activities.

However, today, a reader asked me about the decreasing length of my articles. It’s so good to know that readers actually care about these things. Nevertheless, as explained above, there’s nothing wrong in it, but it did make me think about what was causing it? Well, I’ve been busy with so much stuff for the past few days, I don’t have partners for the blog and it’s tough doing it alone. Still, with all the travelling and full day outings in a 40 degree sun for the past few days, I managed at least one article a day. Pat on the back to me for being able to do that.

Anyway, the point is that articles don’t have to be long. For the question my faithful reader asked me, I needed to write this to explain it to him. He deserves a good explanation for being faithful reader to my little blog. If I learn something and sleep a little bit smarter than the last day, I’ve accomplished my goal for the day. That way, the purpose of you reading this is served. That way, the purpose of the blog is served.

What do you say, long or short? Or, you are always welcome if you want to contribute on this blog. We have hundreds of people who’d come by daily to read your article!

Background

In the past, we’ve seen how geniuses at MIT have figured out a way to capture the beam of light on video, and have replayed it moving in slow motion. In simple words, moving light was captured on camera. Something which the human eye had never seen before was shown moving with the help of technique. But, then there are other invisible things too. Like sound!

Watching sound

Watching the iTunes visualization go, isn’t equivalent to watching sound. Visualizations and waveforms are merely a digital depictions of sound.

While listening to sounds can be too easy, seeing it with your eyes isn’t natural. For that, there is camera trick that can be used to see the actual sound waves travelling in the air. In fact, with this technique, any disturbance in the air can be seen which otherwise, would be totally invisible to the naked eye. It let’s you see sound!

The camera technique has a fairly confusing name. It’s called Schlieren flow visualization. But that shouldn’t confuse you because in simple words, with this technique it is possible to capture on film, the disturbances that are caused by things moving in the air. For example, the invisible disturbances that are caused in the air (a transparent medium) when someone claps can be made visible by using the technique – Schlieren flow visualization.

Here is how it works

Photograph of a wind tunnel model using a schlieren system along  with a schematic explaining the operation of the system

If I write it in words, I’ll only confuse you more. So, here is an NPR video that explains the mechanism very accurately. Otherwise, there’s always this NASA page for it.

Amazingly, like the video shows, it can be used to see the heat coming off the human body. Now, I can definitely think of some creative applications for that.

Watch How 32 Metronomes get Synchronized Automatically!

By Anupum Pant

Background

From biological cells to celestial bodies spontaneous synchronisation is found everywhere in the nature. In simple words, you could call “spontaneous synchronisation” as “a natural self-organisational behaviour” in things. Where, out of a chaos, uniform order starts appearing. If that feels too abstract to understand, read on…

Probably the first human to note this effect was a Dutch physicist, Huygens. Huygens noticed this when he was working on a ship with two pendulum clocks. For very long times, his work of calculating longitudes required him to watch these clocks swinging away their pendulums. He would lie on the bed and watch them go. There was one weird thing he noticed about these pendulum clocks. No matter how the pendulums started swinging, after an hour or so, both the pendulums ended up synchronized! This was a perfect example of uniform order appearing out of no where from an apparent chaos.

The effect amazed scientists for about 350 years. Only then some researchers at Georgia Tech University, were they able to produce a perfect mathematical model that proved it. So, what was happening on the boat? In a similar fashion, would all pendulum clocks in the world get spontaneously synchronized? Let’s look at the following example to find the answer.

Synchronizing metronomes

Think of it this way. You have a couple of metronomes with you – the physical ones, the ones that are based on pendulums. You start each one of them and there is almost no chance that you’d get them perfectly synchronized in the first go. So what do you do to get them synced?

You simply keep all of these metronomes (ticking with the same frequency but different phase relations) on a free-floating table. That gets them synchronized in a matter of minutes. See how the 32 metronomes completely out of sync of each other get synchronized in the following video. Note that they are on a surface that is free-floating.

Adam Milkovich explains the effect very beautifully in the following video:

Another video – Link

Back to Huygens

Now, if we come to see the boat as a free-floating base and the 2 discordant pendulum clocks as metronomes, the segue of their motion into a perfectly synchronized one, makes complete sense.

The only difference is that the boat was a pretty huge free-floating base – something which has a relatively very high mass as compared to the pendulums. And then there is the drag on water; other forces etc.. The pendulums had a very very tiny effect on the boat and in turn, were able to transfer only a teeny bit of energy with every oscillation. So it took longer.

I find it pretty incredible that it even happened in an hour. I think it would have taken a much longer time, given the huge difference in their masses. May be Huygens exaggerated. Or it was a very small boat. Anyway, that is the reason, Huygens’ clocks took about an hour to get synchronized. While the ones we see above are able to do it in a matter of minutes.

Back to the Question

Would all pendulum clocks in the world would get spontaneously synchronized?

Well, I’m not too sure. But this is how I see it:

I think of Earth as a really really really huge free-floating boat. Now, the movement of pendulums on Earth certainly has an effect on the earth. And in turn the other pendulums get affected. And they end up synchronized at some point. But the first effect itself is unimaginably small.

I mean, the Earth is so massive that even if all of the 7 billion people on Earth jumped at the same time, the 6-trillion-trillion-kilogram Earth would move so less. Earth would move about a hundredth of the radius of a single hydrogen atom.

So, pendulums would hardly have any effect. But the effect would certainly be there.

Therefore, I’d say the answer is yes. Yes, all the pendulum clocks on earth would eventually get synchronized. But it would probably take so long, that even earth, leave alone pendulum clocks, would cease existing.

Toy idea: Well, that gives me a great idea for a toy. 5 – 10 pendulums inside a huge pendulum. The inner ones would get beautifully synchronized automatically!

Hit like if you learnt something today.

Horror Movies are Good for You

by Anupum Pant

It is Halloween today and most of us must be busy making plans for the day. But if you’ve missed including a horror movie in your plans, after reading this post, you might want to consider putting it in the list.

Studies have shown that watching a horror movie can actually be beneficial to your health. In two separate experiments, scientists were able to record two different ways in which horror movies can be good for you. Of course, this shouldn’t encourage extremely sensitive people to force horror movies onto themselves. In spite of these proven benefits, pregnant women, old men, little kids and people with heart disorders must try to stay away.

Moreover, the benefits found, were not practically too big. So, if you are thinking of leaving your healthy diet plan and making up for it by starting to watch more horror movies, you are mistaken. But, scientifically, the discovery of such co-relations are considered as noteworthy.

The first study (increase in immunity)

Researchers suggest that while people watch horror movies, their brain secretes chemicals like dopamine, glutamate and serotonin. As a result, there is an increased brain activity, which makes the mind alert for a while. Additionally, threat signals that pass through the brain stimulate adrenal glands to produce adrenaline, which has an anesthesia like effect.

Secondly, a half-hour watch was found enough to boost the number of active white blood cells in their blood – they are responsible to keep diseases away. In the test, a first time watch of Texas Chainsaw Massacre by 32 men and women led to an increased immunity for some time. [Source Paper]

The second study (burns calories)

In another study conducted recently, scientists observed an average of 184 burnt calories among the people who watched The Shining (the 1980 thriller). Jaws took the second spot, with people burning on an average of 161 calories after watching it, and The Exorcist came third, with 158 calories. Top 5 calorie burning movies were as follows:

1. The Shining: 184 calories
2. Jaws: 161 calories
3. The Exorcist: 158 calories
4. Alien: 152 calories
5. Saw: 133 calories

Increased heart rate, muscular contractions, a surge in adrenalin, oxygen intake and greater carbon-dioxide output were the main reasons that  these extra calories got burnt. So, the next time you are watching a horror movie (working out), avoid popping popcorn. [Read more]