The Science Behind Keeping Food Cold

by Jackie Edwards

1 in 10 people around the world become ill from after eating contaminated food. Chilling and freezing food is essential in preventing bacteria from multiplying on it, which can lead to illnesses, including food poisoning. However, sometimes bacteria can grow quicker than you’d think and by the time it’s chilled it may have already got bacteria growing on it. Research has helped our understanding for the best methods of chilling and freezing food to prevent bacteria growth and food poisoning.

Refrigerate When It’s Hot Or Cold?

It’s a common question whether you should let food cool down to room temperature before putting it in the fridge. Before modern fridges came along it was a good idea to let food cool down because putting hot or warm food in a fridge caused the temperature of it to rise, affecting everything else in the fridge. However, technology has made fridges more powerful and they can now easily handle warm food being put in them without the temperature of the fridge increasing much. Wait for food to stop steaming and when it reaches 60°F it can go in the fridge. This is better for food as it doesn’t give bacteria chance to multiply which is a common cause of food spoilage and poisoning.

Bacteria In Your Ice Cream

It’s an assumption that putting food in the freezer stops bacteria from growing or that it kills bacteria altogether. Most bacteria can’t survive in freezing temperatures, but unfortunately, this is not the case for all bacteria and some thrive in the cold environment. Freezers limit water and food sources, but some bacteria will thrive on frozen sugary foods, dairy and meat products. Ice cream contains a high sugar and dairy content, making it a perfect breeding ground for bacteria. One case in Kansas found at least three different strains of the Listeria bacteria in ice cream that led to five people being hospitalised and three dying. A study in Egypt found 42 out of 100 ice cream samples contained faecal coliform and 37 contained Klebsiella.

Stop Cross Contamination  

If you suspect that your freezer may have had a food in it that had bacteria growing on it then the best thing to do is to throw all food away and thoroughly clean your freezer. This is because the bacteria could have spread further than the originally contaminated food and it has the potential to grow on other foods and the sides of the freezer. You should also store food in containers in the fridge and freezer. This does take up more space, but it will keep food fresh and prevent cross contamination, so it can be beneficial to have a big enough fridge/freezer to adequately store food. This can prevent an outbreak within your fridge or freezer and the containers can be easily cleaned instead of having to throw food away or unknowingly eat contaminated food.

Food poisoning and other foodborne illnesses are often preventable, yet so many people are affected by them every year. A lot of this is down to a lack of knowledge and understanding about safely storing food in the fridge and freezer. As soon as food has stopped steaming, put it in your fridge to prevent bacterial growth. Be aware that bacteria can grow in cold temperatures, so use containers to separate food and prevent bacteria spreading.

Evolution of Ergonomics: From Early Man to Modern Human

by Jackie Edwards

The word ergonomics was first used in 1857 in a philosophical narrative by Polish scientist Prof. Wojciech Jastrzebowski. The term derives its name from two Greek words – Ergon, which means ‘work’ and Nomos, which translates to ‘natural law,’ literally translating into ‘how to work according to nature.’ So, ergonomics is a scientific discipline involved in the design and creation of safe and comfortable workspaces so as to best utilize a person’s abilities and boost productivity.

For example, viewing cute pictures to increase workplace productivity is also an important discovery in the field of ergonomics which increases work efficiency by enhancing the mood of workers. In layman language, ergonomics refers to designing products, environments, and systems where people are involved so as to minimize risks of harms or injuries and also, related mental or emotional stress. Interestingly, this principle has been in existence for a long time even though the term itself may have just been coined in recent history.

Where it all began

Ergonomics has been in the very cradle of human evolution, ever since early man began making tools from bones and pebbles to make tasks easier. Archaeological findings have revealed sophisticated ergonomic devices, tools, and equipment from ancient Egyptian dynasties and 5th Century BCE Greece. Several centuries later, we still use axes, plows, hammers and several such tools only in their more improvised and sophisticated designs to fit into our advanced living environment. However, it was not until the 16th century that ergonomics began to be understood and studied. It all started with Bernardino Ramazinni’s medical journal ‘De Morbis Artificum (Diseases of Workers)’ which brought to light the various injuries incurred by his patients, resulting from unfavorable conditions in their occupations and workspaces.

Industrial Revolution

During the historical Industrial Revolution of 19th century, ergonomics was at the pinnacle of attention, being studied like never before. Spinning Jennies and rolling mills were invented to speed up work. Frederick W. Taylor pioneered the process of ergonomics by evaluating the best and easier ways of accomplishing a task and eventually succeeded in improving worker productivity and wages in a shoveling job. Frank and Lillian Gilbreth, on the other hand, standardized materials, work processes and tools and began time motion analysis to make workflow efficient and less tiring.

World War II

With World War II, ergonomics reached a newer height, prompting research in man and machine interaction. This began to prominently reveal itself especially in the design of military systems like naval ships, aircraft and weaponry. The complex devices from radar to aircraft that were manufactured for the war began to demand a better grip of ergonomics without which there was a continuous risk of loss of personnel or equipment. In 1943, a U.S Army lieutenant, Alphonse Chapanis brought to light how so-called “pilot errors” could be greatly reduced. That is when logical and easier to understand control buttons were born in the cockpits of aircraft.

Ergonomics today

Work or ergonomic-related musculoskeletal injuries contributed to a third of day-offs from workplaces as per data published by the Bureau of Labor Statistics in 2013. And, most of these were reported from sectors like agriculture, manufacturing, construction, transportation and warehousing, healthcare and entertainment/recreation. These injuries have not only sparked concern but with it, have also spiked renewed interest in the subject of ‘ergonomics’ to inspire futuristic designs for new age tools tailored to modern technological advances and lifestyle of humans.

Ergonomics may be a relatively new term and newer field of study. However, it has been a part of our life since the very moment of Stone Age. Today, Ergonomics is studied in-depth with specializations in cognitive, organizational and physical sciences.

Awesome ‘Possum

Today I received a copy of Awesome ‘Possom volume 3 in my mail from Angela Boyle, a natural science illustrator and cartoonist who has curated and edited the fourth volume of Awesome ‘Possum. Before I had laid my hands on the book, I had imagined it to be a few-pages-long book that I would sit down and devour in the evening. Boy I was wrong. When I opened my mailbox, I was pleasantly surprised by a 400 page beast of a book. I flipped a few pages and was blown by thinking about the amount of cumulative effort and coordination that must have gone in realizing this book.

Excited, I sat down and started reading every word from the cover and beyond. Not having ever read an illustrated book, I had judged them to be the books for children. I was too old to enjoy them I had thought. When I sent the pictures of the book to my friends, “Aww that’s such a sweet children’s book” is what I got from these other engineers too. I think this is a disease we engineers have, assuming cartoons = children.

Not having experienced something like this, if that’s you, let me tell you, you should get a volume of Awesome ‘Possum to get rid of that delusion. It is indeed a fantastic book for children of all ages. But it is equally good, if not better, for adults! Adults would definitely extract a lot of great experience and knowledge out of it. That is exactly what I told my friends too.

First of course was a beautiful introduction by Ursula Vernon who has a peculiar hobby of taking pictures of moths, and does it despite being a not-so-great photographer or etymologist. With these hobbies in her life she has managed to do big things which I think will touch you better if you read the actual introduction yourself. Maybe, this book right here was a gateway to my own peculiar hobby I thought, and turned the page.

Being an engineer I honestly do now know a lot about animals. A few general things and when I manage to dig few obscure facts, I get excited, do more research and often write about them on my blog here. My point is that the natural world is inherently very fascinating. If you think it is not, you have not known a lot about it.

Awesome ‘Possom was a perfect exposure of the natural world for me. It talks to me about things like, how I should be thankful for little known scientists like Philip Henry Gosse, Anna Thynne and Jeanne Willepreux Power because of whom we are able to decorate our homes with glass boxes (aquariums) with little alien worlds in them. Or things like how rolling bees in sugar could sometimes be a better way to do a mite count and figure if the mite infection is above the threshold to proceed with a treatment. Because alcohol kills the bees.

I noticed a stark difference in the illustration style of each comic and conveniently found the name of the cartoonist or natural science illustrator on top of every page of that chapter. The works of these talented people from across the North America and the world, compiled into this book, refresh you with a diverse subject matter and illustration style every few minutes. And this is just the volume 3 I’m talking about. Then there’s 1, 2 and 4 which is up on kickstarter right now. Volume 4 includes cover art by Eisner-nominated Tillie Walden, creator of Spinning (First Second, 2017) and a foreword by Jon Chad, creator of Volcanoes: Fire and Life (First Second, 2016). I for sure am going to read all of them. In my free time I have been exploring the amazing works of various artists mentioned on this kickstarter page.

EmailSig

Say, Elise Smorczewski for example. She grew up on a farm that fostered a lifelong fascination with animals of all kinds. And Spratty, a cartoonist living near Philadelphia with their various human companions, two snakes, and two cats. They think reptiles are great. More importantly they have had first hand experiences and deep insights to share from their own experiences. Also, they are a wonderfully reliable to get your science facts from!

Chicken Scratch, by Elise Smorcsewski

I have been finding that the snippets of wisdom I get out of illustrations actually stick as if I someone had told me about them. That’s because everything is so visual and is delivered in a way that is easy to digest. You do not get this out of reading dense textbooks. Especially true for people like me who are not directly involved in natural sciences research. We are not great at extracting knowledge out of reference texts without a significant amount of experience in that particularly narrow field. Just within the first few pages I had extracted enough things to delve deeper into and to write about them on my blog. I will be doing that as I go.

I know that the book / scholar world thrives on criticism. That’s not me. i get my style from reading people like Maria Popova of Brain Pickings who believes in book recommendations rather than book reviews. I want to do that. I do not deem myself capable to criticize the work that I myself am not capable of producing. The only thing I see is the endless value in the thousands of human-hours spent in producing carefully curated work for me.

Rattle snakes have infrared detectors on them. How is that not cool, especially for a person who works with infrared spectra on a daily basis.  I realize the importance of having specialized detectors for getting the right information at the right wavelength range. And that reminds me of how a son and dad open up the rattle of a rattle snake in their youtube video to see how it works. And who would have known that rattle snakes also are great parents. The rattle snake illustrations making it easier for me to understand actual rattle snake research also inspires me to look for, or think about making illustrated research papers for the layman to understand my own field! This source of inspiration does not stop for hundreds of pages.

Do not forget to go explore the kickstarter to help the artists get their fair share for their hard work.