Disposable Paper Microscope Costs Just 50 Cents

By Anupum Pant

Background

While doing my daily rounds on the internet today, I came across this awesome piece of modern engineering – An extremely durable and disposable microscope made out of paper and very tiny ball lenses. I saw it first on a Ted talk that I’ve attached below. Ingenious I say!

What’s new?

Microscopes are no longer those sensitive, bulky and costly instruments which were used to observe tiny life forms. These engineers have changed the age-old definition of the microscope. The fold-able paper microscope or foldscope is an origami microscope that weighs just 9 grams and is designed by a Manu Prakash, a Bioengineer professor and his team from Stanford. Instead of costing thousands of dollars, this ingenious origami microscope costs less than a dollar and is set to transform the way people use microscopes.

Besides being light, cheap and foldable, the microscope is water proof, durable to the extent that it can be dropped from the top of a building without getting damaged, does not require any external power, provides a 2000x magnification, can be assembled by a first grader in ten minutes, is easy to carry and is absolutely flat! What more can we ask for!

It can even project the image of bacteria on your wall. How cool is that! I bet your lab microscopes can’t do that.

It is set to transform the lives of those billions of people living in the developing countries. The piece of engineered paper will change the speed and accessibility of medical diagnosis in the poor nations.

Material and actual cost

Well, as the heading tells you it is a 50 cent microscope, not really. It costs only a little more than that. Still, it costs lesser than a dollar – about $0.97. Here is the material cost break-up:

  • Tiny Spherical lens: $0.56
  • 3V button battery: $0.06
  • LED light: $0.21
  • and a couple of other things like tape, paper and switch: $0.14
  • Total: $0.97

Beta testing: The team is currently looking for beta-testers for Foldscope. They’ll choose 10,000 people who would test it in a variety of settings and would help them generate an open source biology/microscopy field manual. See “Ten Thousand Microscopes signup” for details.

It reminds me of

The incredible cheap microscope discussed above is new and very precise. Until recently we didn’t have that. DIYs on the internet taught us to construct (not really) not-so-accurate microscope setups at home using a laser pointer.

All you were supposed to do is point the laser pointer through a suspended drop of bacteria infested water (or other clear liquids).This is how I toyed around (I still do) with a laser pointer to see hazy pictures of possible micro-organisms:

Did you like this article?

Every day I send out a newsletter with an un-cut new article and exclusive content for readers. It’s basically my way of keeping in touch with you and letting you know what’s going on. Your information is protected and I never spam.

Subscribe from the sidebar to stay connected. Feel free to reply to these newsletters too…

Water vs. Red-Hot Nickel Ball

By Anupum Pant

Let me just not say anything before I make you watch this video today:

In the video, a Nickel ball is heated using a torch and is dropped into a bowl of water. As the hot ball touches water for the first time, it makes a certain “Ping” sound. It enters the water and gets covered in a bubble sort of thing. As it cools and the bubble is lost, that “ping” sound comes back again. The “Ping” repeats several times and is fun to hear a metal ball do that!

So much fun that the good guys on Reddit even made a couple of ringtones out of it. Download the longer one here. And the shorter one for notifications here.

Why does it form a Bubble cover?

This happens because the metal that is dropped into water is extremely hot and makes the water around it vaporize. The vapor formed around the ball acts as an insulator and doesn’t let the water touch the metal ball. This is the same effect that lets dip your hand in molten lead or Liquid Nitrogen without getting harmed by it. The same thing happens when you drop water on a hot pan – it dances.

This effect is called the Leidenfrost effect and I’ve covered it in an article before…

I’m not sure what exactly causes the “Ping” sound. If you know or have any theories, please tell me in the comments below.

CrashCourse in Quenching

Well, if I’d have wished to piss you off with jargon, I’d have said: “You just watched a hot Nickel ball being quenched in water”

Yes, quenching. Quenching is the name for making a hot metal cool very quickly. It is pretty interesting to know why some one would, with great effort, heat a metal, and then choose to drop it in water to cool off!
Cooling a hot piece of metal very quickly makes it extremely hard. So hard, that the same process is used to make the hard edges of swords that don’t get damaged even if they are used to cut metal!

There is so much more I wanted to write about the process, but I feel this isn’t the right place for it. Let me leave it for some other day.

Build an Autonomous Toothbrush Robot in Minutes

By Anupum Pant

Background

If you are looking for a cool little science project, I think your search should end right here because today I’m sharing with you an awesome way to transform your toothbrush into an autonomous toothbrush robot. This one is just autonomous enough to move around on its own, hit obstacles, turn around and continue. But remember, since it is a fun project that can be completed within minutes (in under $5), you can’t expect a lot out of this basic bot.

Also, I did not invent this thing. I happened to stumble upon a video by Evil Mad Scientist on YouTube that taught me the basic idea of how this thing works. So, cheers to him. However, since my supplies were constrained, I felt a need to find some alternative methods to construct a similar bot. I’ve shared the original video and my own alternatives (in text) under it… You can skip reading the next two sub-headings and watch the video below them.

Here is what you’ll need:

  • A toothbrush (preferably, one with angled bristles)
  • A cellphone vibrator motor
  • Some double side tape
  • and a Button cell

Here is what you do:

Firstly, do not worry if you don’t have the exact materials mentioned above, I’ve suggested some alternative ideas after the video.

Stick on motorCute but unstable

  1. Grab the toothbrush and carefully cut off the handle, we’ll just need the head. Now, this part can be the most difficult because the plastic at the neck can be pretty tough sometimes. If you are not confident, take help from an elder.
  2. Use the double side tape to stick the motor on top of the head in a way that the rotating shaft of the motor doesn’t touch the bush.
  3. Connect the button cell to the terminals of the motor. If the whole bot starts vibrating with the motor, It’s done. Place it on the floor and watch moving…

[Video]

Alternatives

  • Suppose you don’t have a brush with angled bristles. You can just take any other toothbrush and keep it under your mattress for a day to get pressed. The straight bristles turn into angled bristles. I had to do this, so I know.
  • Now, if you don’t have a cellphone vibrator motor, you can use one of these common motors too. All you’ll have to do is stick a piece of clay or tape on the shaft to make a counter weight so the motor vibrates when it rotates. You don’t want it rotating smoothly here.
  • To make the bot turn away better from obstacles, I stuck 3 toothpicks on top of the brush in a way that one of them was sticking out in the front and the other two were pointing out from the sides to form wing like structures.

It hardly takes any effort to try it out and then you’ll have your own bot moving around on the floor of your house. It feels great to watch it move like that! If you can, try making a huge variant. Use a bigger brush, pencil batteries and a bigger motor.

[See this for more details]

Train Wheels are Not as Simple as They Seem

By Anupum Pant

I’m pretty sure not many of you know this about train wheels, neither did I.

Look at the picture and answer this: What do you think keeps a train moving on the track? or Which part of the wheel do you think it is that keeps the train from careening away from the track at turns?
Applying general logic, I thought that flanges at the end of the wheels  kept a train from going off rails at a turn. Turns out, I was wrong!

In fact, flanges at the end of the wheels are just a safety mechanism to keep the train on its track only if the main mechanism fails. And what is that main mechanism?

The problem with cornersTrain wheels are conical in shape. That means they have a varying diameter at different points of contact. Now, suppose the track turns right. The train’s left wheels now have to travel more than the right wheels because at the turn the track on the left is longer.

So how do the left wheels travels more than the right wheels without a differential?
Since the wheels are conical in shape, the whole wheel-set shifts a bit to the left, if the track curves right. Now the point of contact of the left wheel is at a larger diameter of the cone. While the smaller wheel Correction from the toptouches at a point where the diameter of the wheel is lesser. Therefore, if the left wheel now makes one circle it travels further than the right wheels and the train moves along the curve smoothly.

The whole beauty of this system is that the amount of shift of the wheel-set happens automatically, makes the train move on turns smoothly and keeps the train on track.

Look at how you can try this at home using 2 plastic cups and 2 similar pipes. [Experiment]

If I couldn’t explain it properly, probably the best physics teacher ever – Richard Feynman – will explain it to you better. [Video]

Enhanced by Zemanta

Concrete Cloth – Makes Durable Shelters Within Hours

By Anupum Pant

Today we have something which civil engineers would be extremely proud of – A recent innovation in concrete technology that has an immense life-changing potential – The concrete cloth; certainly a splendid engineering marvel.

What is it?

It is material which feels like a very thick canvas and has a three-dimensional fiber matrix. This piece of thick cloth is impregnated with a specially formulated concrete mixture. Once it is completely wet with water, it hardens into a thin, strong, fire-resistant and water-proof material, within a few hours. Commercial variants either have a hydrophobic coating on the outer surface or a PVC lining from the inside to make it completely impermeable to water.

Concrete Cloth

Since it just a thick piece of canvas impregnated with concrete, it can be transported fairly easily and can be made into various shapes to be used for different applications. For instance, it can be used for rapidly deploying hardened concrete shelters for people in need. It works like this:

  1. You carry a huge concrete canvas balloon with you in a truck.
  2. Place it wherever you need the shelter to be deployed.
  3. Pump water into it.
  4. Quickly start inflating it using a pump.
  5. Pull it around using, say a truck.
  6. Wait for it to harden.

Advantages:

  • To erect a shelter with concrete canvas, it only takes a fraction of the time taken to construct a shelter using tradition building techniques.
  • Unlike cloth tents, this one is extremely durable and can last for about 10 years. Moreover, it protects the residents from any form of extreme weather outside (Thermally insulated).
  • Construction material is light enough to be transported by a small pickup truck.
  • Requires just 2 people and can be deployed to a ready state within 24 hours – Within these 24 hours it gains about 80% of its full strength.
  • Can be tailored as required with the help of staples, cuts and nails / screws. In fact cutting it before hardening is not much different from cutting a thick piece of cloth.
  • Does not burn and is water-proof.

[Read more]

Enhanced by Zemanta

World’s Most Powerful Sound Systems Can Kill You

By Anupum Pant

In the past we’ve seen sound systems that used plasma instead of magnets to produce sound. Well, those plasma sound systems were pretty well equipped to kill you, but they would do it in a different manner – by electrocuting you. This one we are talking about today, literally kills you with sound.

LEAF

European Space Agency uses an extra-large speaker that throws extra-big sound at test objects. It is known to recreate the sound that a launcher produces while taking off and travelling through atmosphere. This speaker, known as, the Large European Acoustic Facility (LEAF) in Netherlands, is used by the European Space Agency to test satellite parts.

The Glory: They say that if any person listens to sound playing on this speaker, he/she won’t survive. This is the reason, the most powerful sound system in Europe, is enclosed in a facility that has walls that 17 meters in height, are half a meter thick and are overlaid with a resin on the inner walls that reflects sound & does not let it escape. Also, it has a safety mechanism that doesn’t allow anyone to power it on, if the doors are not shut properly.

Nitrogen is pumped in great amounts through the huge ear-canal-like thing which enables it to produce sounds up to 154 decibel! If you are wondering how loud 154 decibel is, you should check this out – How Loud Can it Get. In short, it is loud enough to rupture your eardrums and probably kill you too.

I came across this equipment first at [PopSci]
More information at [ESA]

So I wondered, if this is the most powerful sound system in Europe, are there more powerful ones elsewhere in the world?
Duh! Yeah. And as expected, it is in USA.

Reverberant Acoustic Test Facility (RATF)

Orion-Integrated-Environmental-TestingThe Orion Integrated Environmental Testing at the NASA Space Power Facility (SPF), a huge facility which looks pretty much like a nuclear power plant from afar, houses several other testing facilities, and the world’s largest space environment simulation chamber, also has the worlds most powerful sound system – The Reverberant Acoustic Test Facility. [Image]

The horns that produce sound here, are also powered by Nitrogen and there are 36 of them. It is able to produce a total sound pressure of 163 dB, which is a lot more than what LEAF can produce (because dB scale is not linear) – About seven times more powerful than standing next to a jet engine or a Formula 1 race car. In here, it is far too easy to kill a full grown man.

Fascinating Gear Videos + Moving Gear Fixed in Concrete

By Anupum Pant

Almost everything that has something spinning, probably has, one or a system of gears hidden inside it. Open up a CD drive, or anything that spins, and you’ll see. Mechanical engineers spend a good amount of time learning about traditional gear systems in their courses. I’ve compiled a few gear videos here, that are probably not covered in any educational institution’s syllabus. (please inform me in the comments section if you have them in your course)

1. Crazy shapes: While, It is popularly believed that gears have to be circular to work properly, it should be noted that gears can literally bear any shape and work fine, as long as they are designed well. In the following video we can see how carefully designed gears in square, oval, spiral, fish shapes, and any other out of the ordinary shapes, can be made to work together perfectly. [video]

Some other artistic wooden gear sculpture can be seen in the link here. Engineering meets art [Here]
Build at home: Turns out, with computers in every home these days, designing these gears isn’t rocket science. Enterprising engineers can use this fairly detailed 5-minute video tutorial to cut out weird gear shapes at home. The process of designing can be automated by using jerry’s script. [video]

2. Unpredictable moves – Gears can sometimes work together to provide a mechanical advantage in a system and can end up moving in a pretty unpredictable manner. The following video is a perfect example of how gear ratios can mess with the heads of non-engineers. The guy calls his machine – under the ruler faster than the ruler – watch it and you’ll understand why. [video]

It isn’t magic. If it still confuses you, here is a great post that explains a similar phenomenon that uses gears to build a “faster than wind cart (DDWFTW)“.

3. Reduction gear system with a fixed gear in the end: I wanted to keep this craziest reduction gear system for the end. It is the one that blew my mind. And the ones who think the number 1 and number 2 are ordinary systems they meet everyday in the lab, they need to check this one out.

This system designed by Arthur Ganson transcends engineering and moves into the realm of art. It consists of a motor that spins at 212 revs per minute. To the motor are attached twelve 50-1 reduction gears in series.

The most incredible part – the last gear in this series appears as if it is fixed, but it actually turns. It moves so slow, that it has been sealed into the wall using concrete. Even when the motor is turned on, it appears fixed with rest of the system moving continuously. It is estimated that if it wasn’t fixed, the gear would have taken 2 trillion years to make a complete revolution. In fact the third and the gears after that in this system don’t appear to be moving too.

Meet a 12-year-old Scientist – Peyton Robertson

By Anupum Pant

Today we meet a 12-year-old ‘man’ who has been on an invention spree since he was just 8 years old. If I may use a pop-culture reference, this adorable boy is a Sheldon Copper in the making.

Peyton Robertson from Fort Lauderdale, Florida, presently has 3 patents pending:

  1. A case (box) to maintain a resting golf ball’s temperature – Peyton loves golf. And on one cold day, when he observed that his golf balls weren’t bouncing the way they should have been, he, instead of sleeping on the problem, thought of finding a solution.
  2. Retractable training wheels: This one is a pair of retractable training wheels connected to a lever mechanism on the handle of a bicycle – you press the lever and the training wheels rise up. A perfect solution for kids who want to experience the joy of biking while they are learning to ride. He invented this to help his sister when she was learning to ride a bicycle. Today, bike manufacturers are flocking around him to buy his idea.
  3. A sand-less sand bag: When the super-storm Sandy struck 24 US states in October last year, the entire eastern sea-face from Florida to Maine suffered great losses. It caused a damage of around $65 billion. Peyton saw this and figured that the sand bags that were being used for flood defense contributed to a lot of inefficiency. These bags were 40 pounds each; moving them from one place to another was tough. But they had to be heavy to stop the water. Besides that, the bags when stacked left undesirable gaps in between, which caused a leakage. Peyton felt a need to contribute to make people better equipped for floods in the future.

His solution – A sand-less sand bag – is better than the traditional bag in two ways. Firstly, weighing around 4 pounds, it is significantly lighter than the sand bag. It contains a mixture of, a polymer that expands when it comes in contact with water, and salt which makes it heavy when it wets. Secondly, this bag comes with an interlocking fastener which keeps the bag in place when it expands – Removing any gaps which could create a leak during the floods. Moreover these bags can be dried later to be reused.

The witty sandbag made him the youngest ever person to win the Discovery Young Scientist Challenge. The prize – $25,000 and a trip to Costa Rica!

In an interview with TED blog he said:

Failure is progress and a normal part of the process. Whether it’s science or life, you have to start, fail and just keep pushing. In a football game, time runs out, and a golf match ends after the last hole. But when you are working on something and it doesn’t work, you just extend the game – and give your experiment or your prototype another go.

It was a delight to watch the charming boy speak on The Ellen DeGeneres Show. Sadly, that video no longer exists, here’s a replacement with the guy’s own pitch:

15 Craziest Ways to Charge Your Phone [Part 1]

By Anupum Pant

What was considered a remarkable method some years back, today, using solar cells to charge your phone has gone too main stream. How about doing it with a flamethrower, or moon light maybe? Brace yourselves up for an unusually long and interesting compendium of some the most craziest things you could use to charge your phone. And of course, I thank science for bringing these things into the world.

Here, I’ve compiled a few crazy ways to charge your phone. Feel free to contribute any others you know and point out ignorance in the comments section below.

Note: The absurd methods I’ve collected here may set your phone on fire, or worse. So, please do not try them at home. If you do, and succeed in melting your phone, do not blame me for it. Or rather, read whatever you can find about it, before experimenting.

1. Moon Light

What if photovoltaic cells were so efficient that they could draw electricity from the moon-light all night? Well, here you go.
A German architect named André Broessel worked on a project for 3 years to put together a novel process of drawing solar energy that would be far more efficient than the existing ones. In the end, he came out with this perfectly spherical glass ball filled with water, which can use up whatever minimum light it receives to create electricity. So, on a cloudy day or even at night (using light from sun reflected by the moon), with this set up on your terrace you’ll be making electricity 24X7. Moreover, you don’t have to worry about the sun or moon moving in the sky. It comes with a tracking system which adjusts itself to capture the light.
It is basically a super-refined version of one of those solar death rays I talked about a few days back.

Your phone is small; this is something which could make whole skyscrapers go off-grid. So, go and give it away on Indie GoGo whatever little you can contribute to the project.

2. Hand Cranked

ku-xlarge

With the amazing moon light capture device for the future, now let us move on to this hand cranked variant of a mobile power bank, you can buy right now. For everyday use, this backup battery pack comes with a hand turbine power generator that will keep you all charged up all the time. It contains a rechargeable 2000 mAh lithium battery for power which can be cranked up for about a minute to create 4 minutes of battery life out of thin air. If you were expecting free energy, in the end, it is important to know that with this device, to bring your phone from completely dead to 100% battery would require nearly an effort equivalent to a full-body workout.
Also, I found a cheaper variant, which works on a similar principle but isn’t documented well on the internet. It got “India talking” for obvious reasons (costs only $7). They call it the RotoCharger.
If you are looking for an easier way, read on.

3. Lightning

Yes, the same thing that Raijin (雷神) drops on earth 100 times every seconds,  is 3 miles long and carries a current of 10,000 Amps at 100 million Volts, was used to charge a Nokia phone. Last year, scientists from the University of Southampton teamed up with Nokia to try and harness the energy of a lightning bolt to charge a phone. They succeeded in charging a Nokia Lumia 925 with a 200,000 volt lightning bolt, created in the laboratory.

Here is a YouTube video posted by Nokia’s official YouTube channel demonstrating the same:

4. Wind/Air

IfanBlog

In a recent development, researchers at the University of Texas at Arlington have developed a micro-windmill made up of a nickel alloy. It is so small that you could put 10 of them could on a grain of rice. According to them, in the future, hundreds of these tiny windmills could end up in the housing of your smart phones and power them using wind energy.

Earlier, undergrads from Nirma University of Ahmedabad in India had developed an eco-friendly headgear that used a little fan for harnessing wind energy. As it also uses solar energy, at just $22, it is indeed a great device for charging your phone on the move.

Talking about devices that can harness wind energy on the move, the iFan is one ingenious device that comes to mind. It can be mounted on a bicycle or can be held outside a car window to charge your iPhone.

Lung Power: Talking about air, there is this clever gadget that transforms the air from your lungs into energy to charge your phone. Created by Inventor Joco Paulo Lammoglia, from Rio de Janeiro, Brazil, AIRE mask can harnesses the wind power created by breathing and converts it into electricity to run anything from your iPod to your mobile.

5. Body Heat

body heat phone charger

Working on the same principle as the flashlight without batteries, a jacket developed by Stephen Beeby, Professor of Electronic Systems at the University of Southampton, uses thermoelectricity to power your phone. According to the professor, you have to sleep for quite some time to find a fully charged phone:

Eight hours in the sleeping bag, roughly speaking, will provide 24 minutes of talk time and 11 hours of standby time. That’s assuming the inside of the sleeping bag is 37 degrees – human body temperature.

6. Sound

soundcharge tee

In theory, talking to your can generate energy to charge a phone. Although to win a substantial amount of battery life from this prototype, you’ll have to scream at the top of your voice. According the lead researcher, Sang-Woo Kim of Sungkyunkwan University’s nanotechnology institute who invented it, it requires 100 decibels to generate 50 milli-volts of electricity. That’s enough to give a Smartphone battery a little support, is still far from what a normal wall plug charger could give you. The researchers are really confident about taking this technology to the next level and making it viable for practical use.

Another one: GotWind’s Sound Charge t-shirt converts sound into electricity. A person wearing this can charge a device battery while thrashing around in the mosh pit. A textbook sized panel of Piezoelectric film in the front acts like a microphone. It absorbs sound waves and converts them into electricity through the compression of interlaced quartz crystals. This electricity is then fed into an external power bank. [Video]

7. Shake

There was a time when kinetic wrist watches were the fad. Today, how cool would it be if you could shake up your phone for an extra boost?
So, Researchers at Virginia Tech tried to make a charger that draws energy from a piezoelectric material and could convert vibrations into energy. They say, when it is done, simple taps on the phone screen or keyboard would produce enough energy to deal with emergencies.

But, long before the researchers announced this, the world had seen nPower PEG. Apparently, it is the world’s 1st human-powered charger for hand-held electronics. It gives you access to backup battery power even when you’re away from home by using the energy you generate while walking, running, or biking to charge your smart phone, music player, GPS, or other devices.

Ah! I’ve written too much for the day. Remember to check back next week for the 2nd part of this post. 

Moving Light Captured on Camera

By Anupum Pant

The speed of light

In vacuüm, light travels 299,792,458 meters in a single second. In other words, in a single second it travels 186,000 miles. To establish a  perspective, if I could move that fast, I would circumnavigate the world in 0.13 seconds. A hypothetical jet plane would take more than 2 days to do the same. In short, it is fast. It is the fastest – Nothing beats light.

If you try to record moving light on a home camera, you’d fail miserably. That is because normally they can roll only about 30 to 60 frames per second. In fact, you’d not even be able to capture a fast-moving ball without motion blur, forget recording moving light. To record fast things you need fast cameras that can roll several thousands of frames every second.

In the past, high-speed-cameras, rolling film at thousands of frames per second have been able to record bullets moving in slow motion, bubbles bursting, people getting punched and what not! MythBusters use such cameras for almost every experiment they do.

But light travels a million times faster than bullets. Till the year 2011, to capture moving light on film was considered an impossible feat; and then, a team from MIT media lab invented this.

A 1,000,000,000,000 FPS camera

A camera that can record at a speed equivalent to a theoretical one-trillion-FPS camera was invented by a team at MIT media labs in the year 2011. This camera can record light moving through space, in slow motion! To look at what it can do, you’ll have to watch the video below. In the video, the researcher explains its mechanism in detail.

It is theoretically impossible to craft a mechanical device that can roll film at such extremely high speeds. To tackle this physical limit, these geniuses invented a whole setup containing several cameras sensors that work together to make this feat possible.

Note: In reality, the camera doesn’t record the footage of a trillionth of a second. It is a composite video of lines of different pulses of a laser recorded and stitched together. The time it takes to compile enough data for the video, is more than what it takes the light to travel from one end to another.

Enhanced by Zemanta

Is Glass Liquid Or Solid

By Anupum Pant

Glass stories have tormented me for years. A few well informed gentlemen, over the years, have communicated to me anecdotes that have contradicted and shown glass as liquid or solid, without solid proofs that could have helped me believe just one of them. A few days back, like I cleared my doubts about the gas station and cellphone story, I decided to find this out too. So, what is it really? Is glass liquid or solid?

Glass is a liquid?

1. Antique glass panes: A couple of years back I was told (I don’t remember where it came from) that glass windows of very old buildings have glass panes that have been found to be thicker at the bottom. That, according to them, absolutely proves that glass is a liquid that flows very slowly. And apparently explains, how the lower parts of these old panes get thicker – the glass from the upper part of the pane flows down as time passes. I thought it would be something like the world’s slowest experiment; so it could be true.

Till today, I had believed the same. It turns out, I was wrong all along.

Explanation: Firstly, there is no statistical study ever conducted that proves, all antique window panes are thicker at the bottom. Secondly, even if all of them are really thicker at the bottom, the difference in thickness has nothing to do with whether glass is a solid or a liquid. The cause of thicker bottoms is due to the fact that glass manufacturing process that was employed at the time wasn’t able to create perfect glass panes (with uniform thickness). The process made it almost impossible to produce glass panes of constant thickness.

Or, you could simply wait for a few years to see if perfect glass panes stuck on skyscrapers today mysteriously turn thicker in the bottom.

If you think you can NOT take my word for it, I have a quote for you from a distinguished science textbook – Glass Science – below:

Glass is an amorphous solid. A material is amorphous when it has no long-range order, that is, when there is no regularity in the arrangement of its molecular constituents on a scale larger than a few times the size of these groups. A solid is a rigid material; it does not flow when it is subjected to moderate forces. – Doremus, R. H. (1994)

2. Glass is a Super-cooled liquid? : This misunderstood phrase from Gustav Tammann’s book is probably the origin of the myth that glass is a liquid. The quote “glass is a frozen supercooled liquid” has been misquoted hundreds of times with the word “frozen”, forgotten. Today, this misquotation has grown to such great levels that it is actually difficult to go down and extricate the original quote that contained the word “frozen” in it. One word can indeed make a huge difference.

Finally, glasses are only amorphous solids. Where the term amorphous and solid have been separately been explained clearly in the year 1994 by Doremus R. H.
Together, these two words mean the same as definition of two separate words put together. Glass is not a liquid.

If you haven’t read about the ancient Nanotech marvel, Lycurgus cup, you are probably missing something amazing about ancient glass technology.

[Read more]

Building A Solar Death Ray At Home

By Anupum Pant

Sun’s Energy

Sun is an huge fusion reactor. Every second it produces enough energy that could power the US for 9 million years. But from the perspective of people living on earth, most of it radiates into the space and gets ‘wasted’. Still by using even the part of energy that is received by us, a solar death ray that melts steel can be built.

Earth is only a fraction of the size of sun. In comparison, sun is so mind-boggling-ly big that I bet you can’t manually scroll this page from Sun, all the way to earth (and this is a heavily scaled down version of our Solar System). In short, earth is so small that it receives a microscopic fraction of the energy radiated out by the sun.

Technically: The total flux received by earth is about 343 Watt per meter squared. On the way to earth’s surface, 30% of this gets scattered by the atmosphere and 19% of it is absorbed by the clouds. So, out of 343, only 51 percent reaches the surface. Which is calculated to be about 175 Watt per meter squared. Which is a very small part of the energy that sun gives out. [Source]

And yet, sunlight received by earth has by far has the highest theoretical potential of the earth’s renewable energy sources.

Harnessing this energy

For humans, it is possible to directly harness this energy broadly in two ways – heat or electricity (photoelectric effect). We are interested in only the heat part here. To demonstrate the kind of heat that can be generated by focusing 2 meter square worth of this energy to a single point, watch how this equipment can melt steel in seconds (The melting point of steel is around 1500 degree centigrade).

Making at home

Building something similar at home is fairly easy as far as the concept is concerned. But the process can be very tedious. I found three interesting ways in which this can be done at home.

1. Using a satellite dish: A satellite dish is parabolic and is designed to focus signal to a single point. Instead of signal, you could use it to focus light (sun rays). To use an old dish for making a solar death ray, all you’ll have to do is stick 5,800 tiny pieces of mirrors on its surface, like Eric Jacqmain did. – [Source]

2. Use a projection TV: A projection TV has a huge Fresnel lens in front of it. It is kind of a convex lens that is flat. If you can find an old projection TV, you could use the screen to make a solar death ray like Grant Thompson did.

3. Using water: Another creative way could be to use water. By combining the power of gravity and stretching plastic, you could turn clear water into a parabolic lens like this [Video]. Although I don’t think something like this could be efficient enough to melt steel. It could still be used as an outdoor machine to cook breakfast.

EDIT: Why isn’t there a comments section?

First I forgot to add this and remembered only when a reader pointed it out. I promised in my yesterday’s post, that i’d tell you the reason behind a missing comments section on this blog. Here it goes…

I use a theme built by Leo Babauta (see FAQ) and am a fan of his teachings. It [the theme] has an inbuilt comment section but Leo doesn’t use comments on his blog. For me to not use it too, there are 3 reasons:

  1. I’m a fan of Leo Babauta and try to emulate his ways in my life. (not perfectly)
  2. I want to create a pure reading experience for the reader (now ads, which hinder the pure reading experience, are for experiment only). People who really like to interact usually mail me. And it is a much more enriching experience.
  3. Unlike every other blogger, comments have a great effect on me. This in turn affects my ability to write. For instance, comments which appreciate, seem flattering to me. As a result, I become complacent. If they are critical, I get concerned about my writing abilities. There are hardly any neutral comments. I’d like to focus my energy on writing than arguing on the internet.

I do have plans to include it in the future. It is just that I’m not sure when I’ll do it. Probably when I change my theme, I’ll do that.

Lycurgus Cup – An Ancient Nanotech Marvel

By Anupum Pant

The concepts of modern nanotechnology must have been first seeded in the year 1959 by the renowned physicist Richard Feynman, but Romans were already doing it back in 300 AD (around 290-325 AD). About 1700 years back, utilizing the principles of Nanotechnology, Roman engineers had crafted a magnificent chalice – Lycurgus Cup (picture). Like the Prince Rupert’s drop, this is another glass marvel you should know about.

Side note: You can listen to the legendary lecture by Dr. Feynman on YouTube – There’s Plenty of Room at the Bottom, where he discusses the “possibility of synthesis via direct manipulation of atoms”, or Nanotechnology.

Lycurgus cup description

The Lycurgus cup was probably the first ever optical artificial [meta]material – Ruby Glass – engineered to have properties that may not be found in nature. Its unusual optical properties are something that makes it stand out.

Normally, the cup appears green, but if it is illuminated from the inside or lit up using a light placed behind it, it glows ruby-red; hence the name, ruby glass. This kind of glass is known as a Dichroic glass. Dichroic  literally means ”two colored” and is derived from the Greek words ”di” for two, and ”chroma” for color; in this case, the colors green and red.

The technology behind this cup baffled scientists for around 40 years (from 1950s to 1990s). It was only in 1990s that they figured out how it really worked. The goblet has been preserved well, and is presently at display in the British Museum.

Dichroic glass

Dichroic glasses do not use paints, dyes, or any coloring agents for the color. They are made using fine coatings on glass. The coatings themselves do not have a color, but rather they bend light to reflect colors like a prism does, to make rainbows.

These colors are visible due to the presence of very minute amounts of finely ground gold and silver particles in it. Romans could have included these powders unknowingly as contaminants or might have added them on purpose to achieve the very effect, we’ll never know.

Inspired by an age-old technology

NASA, in the 1950s, used a similar technology to fabricate a kind of glass that could selectively reflect light wavelengths. They achieved this by depositing a thin-film of metal on the glass.

With innumerable combinations of oxides, glass colors and patterns available, the possibilities to utilize this phenomenon for various useful purposes are endless.
The unusual properties of this cup have also inspired material scientists to create concepts for an invisibility cloak using modern nanofabrication technology. [Source]

I want to study interesting materials like these

If you think the Lycurgus cup, Wolverine’s claws and Aerogels (If you haven’t heard about it, you must definitely check this out!) are awesome. You can make a career in researching materials like these by making a foray into Materials Science and Engineering. Most good universities offer a course in it. It is a budding field, growing at a rapid pace, replete with real-world challenging conundrums waiting to be resolved.

Drones beyond Amazon’s Drone Delivery System

By Anupum Pant

For a long time I’ve had this idea noted in a file and the hottest news from Amazon, linked to a “revolutionary drone accomplishment”, pushed me into writing it down. Since I cover topics ranging from a gamut of areas in the name of science, I thought, through this article, it would be appropriate for me to enable my readers see beyond an ongoing viral news topic – The unveiling of Amazon’s drone delivery. If you haven’t seen it already, you’ll find the video here. [Video] [details here]

Long before Amazon released its concept of Premier Air, 30 minute delivery, the idea – usage of drones for things you wouldn’t have thought of – has been tested or put to use in several related ways. Some of the reported tests and uses of drones are as follows:

Drones for food delivery: During June 2013, with an idea (read: PR stunt) that would inspire Amazon in the future, Dominos U.K. released a test video of the “DomiCopter”. In the video they showed an unmanned drone picking up a Pizza and delivering it to the customer without having to encounter any traffic in between. Slick! But, that isn’t all.
A year before this, Taco delivering drones as well as a Burrito bomber drones were also seen. All of them had gone viral. Yet, we still have a long way to go to see these delivery systems working legally.

Mosquito killers: A North Florida-based company that supplies drones for military missions, showed a drone that would speed up detection of stagnant water. As a result, helping the authorities cut mosquito breeding grounds in Florida.

Hover Cameras: Golf channel tested a new way of filming golf tournaments using drones this year. Besides that, we’ve seen drones being used for sports photography and journalism too.

Drone Waiters: To promote a new product, YO! Sushi, a London restaurant started using ‘flying trays’ for bringing burgers to their customers. These flying trays were nothing but drones carrying food trays. Also, it increased their speed ‘exponentially’.

Drone Constructors: This project dates back to the year 2010-11. Two architects, Garamazio and Kohler demonstrated aerial construction using unmanned drones. However, they demonstrated building process for a heavily scaled down version of a building using foam bricks. Nevertheless, it was an achievement in the year 2011, when QuadroCopters were just starting to get popular.

Although we have seen a lot of unusual uses for drones being demonstrated all around the globe (many more creative uses remain to be seen), we are yet to see their practical implementation; especially for projects like the Amazon drone delivery, which require drones to move around in a complicated airspace (in terms aviation rules).

Federal Aviation Administration (FAA) is actively working on rules for unmanned aerial vehicles. Still we won’t see drones moving around legally and freely, any time before 2015.

Everything else you’d want to know about drones: PopSci

A Flashlight That Uses Body Heat Instead of Batteries

By Anupum Pant

I talked about a light that utilizes the power of gravity to light up a few days back. This flashlight is a bit similar in a way that, it also doesn’t need any batteries. But the underlying mechanism it uses, is completely different.

The winner of this year’s Google Science Fair, in the age group of 15-16, was a 15-year-old girl from Canada, Ann Makosinski. In her project she created a flashlight that, instead of batteries, uses our body heat to light up. She calls it “Hollow Flashlight”

The flashlight uses 4 Peltier tiles to convert the temperature difference (between body and room temperatures) into energy. One side of the tiles is heated by our body heat and the other side is at room temperature. This temperature difference creates electricity using the Thermoelectric effect. The tiles used for this light need a minimum of 5 degree difference of temperature to work.

Peltier Tiles

Peltier tiles utilize thermoelectric effect to convert temperature difference into electricity. When there is a enough temperature difference, charge carriers move from hot area to the colder area. This separation of charges builds up a potential difference across the height of the tile. This potential difference can be used up for various things. In this case, it was used to light up LEDs.

Advantages: The amount of potential difference produced depends on the material. Peltier tiles are great because they are compact and they do not use any moving parts. Elimination of any moving parts eliminates wear and tear. They last long and do not need a lot of maintainance. However, their efficiency is not so great. So, they are used only where long life is essential.
The Voyager space probe and other deep space probes, where long life is of prime importance, use Thermoelectric generators (another image). The heat there is produced by a radioactive isotope. Implanted pacemakers which require long life also use it as a source of energy. All of them work utilizing the same effect – thermoelectric effect. The eco-fan, a wood stove fan, also uses the same effect in a very creative way.

Thermoelectric Generators have a very interesting history.