Seeing With Your Tongue and Listening to Colour

By Anupum Pant

I’m always fascinated when I see one sense organ do the work of some other sense organ. Like breathing from your eyes ( not really) or seeing with your ears (really) listening to colours etc…

not available in your country

Solving The Technical Problem (Not available in your country): Today, I stumbled upon a video whose title was “Blind Learn To See With Tongue“. It was uploaded on YouTube by CBS – an American TV network. The sad part is that they had tweaked the videos settings which did not allow me to watch it. It wasn’t available in India.

Whenever someone says I can’t do something, I’m almost always prepared for it. This time, I had this extension installed on Chrome called ZenMate. It’s perfectly legal (available on chrome store) and works very smoothly. It allows you to surf the internet with total control. With it installed, you can totally forget about your physical location and fool the websites which place a location restriction for access, like Spotify and Youtube’s “not available in your location” videos. I haven’t tried other things but it should allow Indians to access stuff from websites like Hulu, Pandora and Netflix. (Even if it may seem out of place, I wasn’t paid by ZenMate to write this. I really recommend it.)

The Customary David Eagleman talk

Now, whenever I come across something that has to do with seeing things with an organ that is not really meant for seeing, I remember this very-old TED talk by David Eagleman. And I like to attach it to my blog because I can’t really explain this amazing ability of the Human brain as well as he does. He basically segues his talk to discuss how brain can learn to interpret various kinds of signals to produce an image. So, here it goes. Watch it and read on…

Since it is clear that seeing is the ability of the brain, not eyes, we can comfortably move on to see how you could even see with your tongue – Tasting the light.

Seeing with the Tongue

A device called BrainPort can help you do that. The contraption consists of a camera that sits on your forehead and sends information to a small computer. The information is processed, converted into electrical pulses, and then sent to an array of electrodes touching your tongue. The brain processes these signals and converts them into an image.

At first, of course the brain doesn’t know the trick to process visual signal from the tongue, but it learns. Gradually the device becomes a part of your body and you start seeing with your tongue! Just like Neil Harbisson can listen to colour. In fact, he can see more colours than our eyes can see because the technology allows him. He can see infrared and ultraviolet too!

Listening to Colour – TED talk

Hit like if you learnt something from this article.

Sun’s Green Flash

By Anupum Pant

More often while setting than rising, if the conditions are right, a part of the sun (on the top) can appear green. This happens for very short interval lasting for about 2-3 seconds and is considered a rare phenomenon. Since it is green and lasts for a very small interval, it is also called the green flash, emerald flash or green ray. If you have ever captured it or plan to do it in the future, do share your results with me through mail/twitter. [See the animation] [Real GIF]

What does it look like?

Sometimes the sun’s rim can appear green (in optically zoomed images). Otherwise, when the sun is set, for a brief moment, it appears as if a part of sun has separated from the main body and has turned green. It is usually seen as a horizontal line, like in the video below. But, a few lucky ones have captured complete green auras too.

Why does it happen?

The sun gives out a white light, which contains all the colors – Green is one among  them. Normally, our eye isn’t able to resolve the separate colors and sees them as a mixture which is white. When the sun sets, our atmosphere acts like a prism and bends the colors. A few colors get bent more than others. For example, green bends more than red. As a result the two colors get separated enough to be resolved by our eye. But the right amount of bending happens only if the atmospheric conditions are right.

In extremely rare cases, blue or violet flashes have been reported. [image]

For a detailed explanation you can go through this – [Geometric Optics of Green Flashes]

At poles where the sun moves in a different manner, probably the green ray can last much longer. Admiral Richard Byrd has claimed to have seen this green flash for 35 minutes while on an expedition to Antarctica.


There Is No Pink

By Anupum Pant

As we’ve seen before in a talk by David Eagleman, that there is nothing like colors really. They are simply electromagnetic waves with varying wavelengths. Colors are perceptions created by our brains that give us an evolutionary advantage to differentiate things easily. Without colors it would have been really difficult for us to spot fruits on trees. Of course that is just one of the millions of examples of how colors help us.

Perception kept aside for a while, we actually do know that there is a spectrum of visible light as we see it – ranges from violet to red. We see this spectrum on rainbows and thin films. Each of these colors on the spectrum is a wave (and particle) that has a particular frequency.
Mysteriously, the universal symbol of love, the color pink, is absent in this spectrum. There is no specific frequency for the color pink. There is no pink. Still we see it. So, what is pink, really? If it isn’t in the spectrum, why do we see it?

Why do we see pink?

Single type cone alone: We detect colors through these things called cones that are present at the back of our eye. There are 3 types of cones – let us call them red, blue and green. So, if an object absorbs all the white (sun) light and sends just the red color [waves] towards your eyes, red cones get activated and your brain tells you, you are seeing the color red. Similarly, green or blue cones get activated when the respective green or blue waves come towards your eye and then you are able to see the colors green or blue.

2 of them together: For other colors, things can get a bit complicated. To see pure yellow, both red and green cones have to get activated. Similarly, when green plus blue cones get activated, you see cyan, and blue plus red cones let you see the color magenta.

But cone aren’t switches that go either one or zero. They are like sliders. For instance, to see the violet color, your blue cones get fully active, while the red cones are activated only to a certain extent. As a result, your brain says, violet! That is 2 types of cones working together.

3 of them together: Now let us see how three of them work together. The color white activates all the 3 type of cones fully. Black activates none. And so on…

Pink does something similar as it uses three types of cones. To see pink, all three types of cones have to work together.  When red cones get fully active and the other two are only partially activated, we see the color pink.

So, even if objects don’t reflect magenta, yellow or pink (or several other RGB combinations like that), our cones can send mixed signals to our brains and the brain in turn creates these colors for us. In reality, they don’t exist.

[Read more]

What is pink really?

Henry Reich of minute physics, in his video explains this by referring to pink as white minus green. So, according to them, the color pink is actually minus green.  In short, absence of green color is nothing but pink. I’ve attached the video below: